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Connecting change and learning

Elliott Moreton
HO # 3 (final), July 30 (Θ) UNC-Chapel Hill

(1) Where we are:

(2) Main points so far:

a. Relative probabilities of typological changes completely determine long-term typological fre-
quencies (and vice versa, up to a constant factor), if certain language-contact effects are rare
enough to be safely ignored.

b. Typological change probabilities depend on analytic and channel bias in the transmission of
linguistic competence between generations.

(3) What lies ahead today:

a. Relating typological change to channel and analytic bias. How quantitative dare we be?

b. Defining and quantifying channel and analytic bias. What properties must a learner have in
order for them to be well-defined?

c. The logic of the typical lab-learning experiment. Assuming that it’s “like” L1 or L2 learning
in the relevant ways, what can analytic bias measured in the lab tell us about analytic bias
in nature (and hence about relative probabilities of typological change)?

d. Concrete example: Height-height and height-voice patterns (continued from last time).

1 Model of type change

(4) Markov model (Bell, 1970; Greenberg, 1978) reduces typological bias to transition bias (“Why
is S1 → S2 more likely than S1 → S3?”). Where does transition bias come from?

(5) Model of type change by community: Based loosely on Weinreich et al. (1968). Basic idea:

a. Speakers have one very frequent grammar, plus other options that are much rarer. Predomi-
nant grammar determines typological category.
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b. Change happens for social reasons only: One of the rarer grammars gets promoted to pre-
dominance for reasons which have nothing to do with its phonology.

c. Probability of promoting an optional grammar depends on the frequency of that optional
grammar, which in turn depends on how likely it is to be innovated on the basis of training
data produced by the incumbent predominant grammar.

d. Hence, probability of typological change ultimately depends on probability of innovating the
target grammar as an optional process.

(6) Model of mature speaker:

a. There is a fixed set of available deterministic grammars {G1, . . . , Gn}. Different typologies
classify these grammars in different ways:

S1

︷ ︸︸ ︷
S2

︷ ︸︸ ︷
S3

︷ ︸︸ ︷

G1 G2 G3 G4 G5 G6

︸ ︷︷ ︸

T1

︸ ︷︷ ︸

T2

b. Speakers control multiple styles, which they use depending on social context. We’ll ignore all
but two of these styles, the “type style” (the one that determines the typological classification
of the whole language) and the “lab style” (the new style learned in the lab).

c. Variable processes: A style is completely specified by φ̄ = (φ1, . . . , φn), where φk is the
probability of using Gk in that style.

G1 G2 G3 G4 G5 G6

S1 S2 S3

d. We can write φ(Si) to mean the sum of all φk such that Gk ∈ Si. A style φ̄ is typologically in
Si if φ(Si) > φ(Sj) whenever j 6= i (i.e., most-probable type determines membership).

(7) Model of community of mature speakers:

a. All speakers in community have same type style φ̄.

b. The type style heavily favors the predominant grammar: φ(Si) ≫ φ(Sj) for j 6= i. Conse-
quently, all communities speaking a language in Si have approximately the same type style
φ̄i.

c. Social promotion: An optional grammar may become predominant (= typological change)
for reasons which are entirely extra-linguistic and indifferent to the content of the grammars
involved. All the model can see is that

pij = Pr(Si → Sj) = s · φ̄i(Sj)

where s is fixed and small, and i 6= j.

(8) Model of learner:
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a. Learning outcome φ̄′ depends only on the frequencies of certain events in the training corpus
out(φ̄).

E.g., for GLA (Boersma, 1997; Boersma and Hayes, 2001) or Maximum Entropy (Goldwater
and Johnson, 2003; Hayes and Wilson, 2008) learner, the events are violations of particular con-
straints (Jäger, ming); for RCD (Tesar, 1995), they are Elementary Ranking Condition rows
(Prince, 2002; Magri, 2008); for parameter-setting learner, they are particular cues (Dresher,
1999).

b. ⇒ Can represent input to the learner as d̄ = (d1, . . . , dn), and any two corpora which have
the same frequencies will produce the same learning outcome. Example:

Events CV V CV C V C CCV . . .

d̄ d1 = 13661 d2 d3 = 10902 d4 = 160 d5 = 0 . . .

c. Since the corpora are so large, any two speakers in the same community will produce essentially
the same d̄ (two big samples from same frequency distribution; Law of Large Numbers). ⇒
We can speak as if out were a deterministic function.

(9) Model of inter-generational transmission:

a. A given mature speaker of a language in Si generates an output corpus with event frequencies
d̄i = out(φ̄i). Ex. for final-obstruent devoicing:

Sequence: /t./ /d./ /n./ /V./

d̄i: 1000 3 500 750

b. The corpus passes through the speech channel (articulation, acoustics, perception). The
channel alters the frequencies in d̄i by some linear function which can be expressed as a
confusion matrix C. E.g.:

Response
Stimulus t. d. n. V.

t. 0.99 0.01 0.00 0.00

d. 0.06 0.82 0.11 0.01

n. 0.00 0.08 0.91 0.01

V. 0.00 0.00 0.00 1.00

d̄i · C = (999, 49, 456, 753)

c. The learner learns from d̄i · C, i.e.,

φ̄′

i = lrn(out(φ̄i) ·C)

Since change happens only for social reasons (by the Weinreich et al. hypothesis), φ̄′

i = φ̄i.
1

d. Since φ̄i is dominated by Si,

pij ≈ s · (lrn(out(Si) ·C))(Sj)

1This means the learner can’t simply match the frequencies in the data. If it did so, then there would be runaway
growth of minor processes supported by channel bias at the expense of the predominant type, leading to non-social
change. The learner has to unfairly favor the predominant type to prevent this from happening (Hudson Kam and
Newport, 2005; Griffiths and Kalish, 2007).
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i.e., the probability of a type transition from Si to Sj is proportional to the acquired probability
of Sj , given data generated by Si alone and transmitted via the biased channel.2

(10) There is no realistic hope of figuring out what s is, so we won’t be able to find pij . However,
we ought to be able to find the ratio of two transition probabilities, since the s’s will cancel out.
E.g.,

p12

p13
=

lrn(out(S1) ·C)(S2)

lrn(out(S1) ·C)(S3)

And we know from last time that what matters for typological frequency is the ratio of the transition
probabilities, not their absolute size.

2 Connecting learning to channel and analytic bias

(11) Analytic bias (aka inductive bias) means different learning response to data of equal statistical
quality. ⇒ To study it, we need a way to define “equal statistical quality” between two data
sets.

(12) Example: Suppose we are comparing the innovation of final-obstruent devoicing and final-
obstruent voicing:

S1

neither
S2

FOD

S3

FOV

p12

p21 p13

p31

Suppose the only relevant categories for the learner are those of certain syllable-final segments
(ignoring alternations for simplicity):

Segment: /t./ /d./ /n./ /a./

d̄i ·C: 999 49 456 753

A learner exposed to this evidence would acquire final-obstruent devoicing (S2) to a greater extent
than final-obstruent voicing (S3). What would data of “equal statistical quality” for final-obstruent
voicing look like? Presumably:

Segment: /t./ /d./ /n./ /a./

d̄i · C ·H23: 49 999 456 753

2Because of L1 effects on perception, C will depend to some extent on Si, and should really be written Ci. We’ll
dodge this complication today by only considering cases where it doesn’t matter.
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(999, 49, 456, 753) ·







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

H23

= (49, 999, 456, 753)

(13) Generally, we want H23 to rearrange the entries in d̄ in such a way that

a. H23 has an inverse, so we can swap cues going in the other direction.

b. H23 preserves the statistical representativeness of d̄ with respect to the types:

(i) Pr(d̄ = out(S1)) = Pr(d̄ · H23 = out(S1))

(ii) Pr(d̄ = out(S2)) = Pr(d̄ · H23 = out(S3))

(14) It follows that

p12

p13
=

lrn(out(S1) · C)(S2)

lrn(out(S1) · C)(S3)

=
lrn(out(S1) ·C)(S2)

lrn(out(S1) · H23 · C)(S3)

=
lrn(out(S1) ·C )(S2)

lrn(out(S1) · C · H23)(S3)
︸ ︷︷ ︸

A23

·
lrn(out(S1) · C · H23)(S3)

lrn(out(S1) · H23 ·C )(S3)
︸ ︷︷ ︸

C23

a. A23 compares learning response to data of equal statistical quality as a function of the learning
target. If you feed the learner with S2-like and S3-like data of the same statistical quality,
does it learn the respective patterns equally well?

b. C23 expresses difference in learning the same target as a function of the difference in how the
channel treats final [t] vs. final [d] .

c. Both kinds of bias are quantified according to their effect on learning. Channel bias isn’t
directly measurable from spectrograms or confusion experiments (though it may be indirectly
measurable from them).

(15) This seems to give us much of what we want:

a. Neat separation between effects of analytic and channel bias on relative probabilities of di-
achronic change

b. Common unit for measuring and comparing analytic and channel bias

c. Suggestions for experiments to measure them.

(16) However: We can also rewrite p12/p13 as

p12

p13
=

lrn(out(S1) · C ·H−1
23 )(S2)

lrn(out(S1) ·C )(S3)
︸ ︷︷ ︸

A32

·
lrn(out(S1) · H

−1
23 · C )(S2)

lrn(out(S1) ·C ·H−1
23 )(S2)

︸ ︷︷ ︸

C32
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If the channel- and analytic-bias terms of (14) equal their correspondents, then it makes sense to
speak of “the” respective contributions of channel and analytic bias to favoring S1 → S2 transitions
relative to S1 → S3 transitions. Otherwise, we have a presupposition failure.

(17) Under what circumstances can we speak of “the” analytic and channel biases? The channel
biases will be equal if the analytic ones are, so we need

lrn(out(S1) ·C )(S2)

lrn(out(S1) · C · H23)(S3)
︸ ︷︷ ︸

A23

=
lrn(out(S1) · C · H−1

23 )(S2)

lrn(out(S1) · C )(S2)
︸ ︷︷ ︸

A32

(18) ⇒ We want the disparity in learning response to two H-isomorphic sets of training data to be
the same if the two data sets are not too different from each other (differ by about as much as the
channel effect).

(19) We could get that to happen by deleting the “if” clause, so that we require of the learner
that

lrn(d̄ )(S2)

lrn(d̄ · H23)(S3)
=

lrn(d̄′ )(S2)

lrn(d̄′ · H23)(S3)

for all d̄, d̄′.

(20) Won’t work:

a. If d̄ is out(S2), then d̄ ·H23 is out(S3), and lrn(d̄)(S2) = 1 = lrn(d̄ · H23), so the ratio is 1.

b. But then the ratio has to be 1 for all other d̄′, and the learner can’t show any analytic bias at
all!

(21) Solution: Better to use odds(p) = p/(1 − p), which for small p is ≈ p, and which can preserve
a constant ratio across the full range of probabilities from 0 to 1:

odds(lrn(d̄ )(S2))

odds(lrn(d̄ ·H23)(S3))
=

odds(lrn(d̄′ )(S2))

odds(lrn(d̄′ ·H23)(S3))

for all d̄, d̄′.

3 Connecting natural learning to laboratory learning

(22) Where we are:
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(23) Typical lab experiment to measure analytic bias:

a. Participant shows up having already been trained on L1 corpus d̄1 belonging to type S1,
and the types being compared are S2 and S3. The implicit typology is usually the “Martian
typology” (big planet, two little moons):

S1

common
S2

less common

S3

rare

p12

p21 p13

p31

b. Familiarize on one of two data sets, δ̄2 (consistent with S2 only) or δ̄3 (consistent with S3

only), where δ̄3 = δ̄2 · H.

c. The lab situation creates a new social context with an associated style. Participants may
weight lab experience more heavily than L1 experience, so the learning outcome is

φ̄lab,i = lrn(r · d̄1 + (1 − r) · δ̄i)

d. Test using some task where Pr(correct) is

(i) pt when the participant applies whichever of S2 or S3 they were trained on. Usually
experimenters try for pt = 1.

(ii) pg when they guess (apply S1, use a non-linguistic strategy, etc.). In a two-alternative
forced-choice test, for instance, the aim is to have pg = 1/2.

(24) If the learner satisfies (21), then it is straightforward to get from the responses to estimates of
the analytic bias:

a. Let li = φ̄lab,i(Si), i.e., li is how much credence participants put in Si after begin trained in
the lab on δ̄i.
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b. Let pi be Pr (choose correct response when trained on δi). Then

pi =li · pt + (1 − li) · pg

=li · (pt − pg) + pg

c. The experiment gives us an empirical estimate p̂i for pi, from which we can calculate an
estimate l̂i for lrn(d̄1 + δ̄i)(Si, exp):

l̂i =







p̂i − pg

pt − pg

if p̂i > pg

0 otherwise

and so

odds(l̂i) =







p̂i − pg

pt − p̂i

if p̂i > pg

0 otherwise

d. The estimated analytic bias is thus

Â23 =
odds(l̂2)

odds(l̂3)

(25) Connecting that back to to typological change, we predict that

p12

p13
=Â23 · Ĉ23

=
odds(l̂2)

odds(l̂3)
· Ĉ23

(26) Backup plan, in case learner really doesn’t satisfy (21), and analytic bias varies depending on
the training data: We can at least reasonably hope that the direction of the bias never changes,
and that ∀d̄, d̄′,

lrn(d̄)(S2) > lrn(d̄ ·H)(S3) ⇐⇒ lrn(d̄′)(S2) > lrn(d̄′ ·H)(S3)

and hence that
A23 > 1 ⇐⇒ odds(l̂2) > odds(l̂3)

4 Example: height-height and height-voice interactions (cont’d)

(27) Patterns (from previous handout):

HH pattern Predictive dependency between vowel height in adjacent syllables (harmony or dishar-
mony in height between V1 and V2 in V1C0V2). Seems to be rather frequent.
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HV pattern Predictive dependency between vowel height and “voicing” (= phonetic voicing, as-
piration, or fortis/lenis contrast) of immediately-following obstruent (V1C1). Seems to be
rare.

(28) Assumed typology (some states ignored; see previous handout):

S1

voice contrast
no HH
no HV

S2

voice contrast
HH

no HV

S3

voice contrast
no HH

HV

p12

p21 p13

p31

(29) Phonological survey results, with 95% CIs:

π2

π2 + π3
Equvalent

π2

π3

Sample Lower Mean Upper Lower Mean Upper

Strict (7:0) 0.768 0.938 1 3.31 15.1 ∞

Lax (14:2) 0.656 0.853 0.973 1.91 5.80 36.0

(30) From last time:
π2

π3
=

p12

p13
·
p21

p31

implies
p12

p13
or

p21

p31
≥

√
π2

π3

⇒ We hypothesize that p12/p13 ≥
√

π2/π3.

I.e., in order for HH to outnumber HV by as much as it does in real life, one of two things has to
be true: Either HH is more likely to be innovated from S1, or, once innovated, it is less likely to
be lost, by a certain minimum margin in either case. We are testing the hypothesis that it is more
likely to be innovated (by at least the margin).

(Why are we focusing on innovations rather than extinctions?)

(31) Linking hypothesis, from (25):

p12

p13
=A23 · C23

so

√

π2/π3 <
odds(l2)

odds(l3)
· C23
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But what is C23?

(32) Phonetic-precursor surveys (see Moreton (2008) for details and Yu (ress) for critique):

a. Find studies where vowel F1 is measured in the relevant contexts.

b. Identify contexts likeliest to raise or lower target F1

c. Effect of context is defined to be (F1 in raising context)/(F1 in lowering context).

d. If F1 was measured at multiple points, the one closest to the context was used.

(33) HH and HV precursors:3

(34) ⇒ Production effect on F1 is larger in HV than HH precursor. If we assume that perceptual
confusions follow production differences, then we can infer that

⇒ C23 =
lrn(out(S1) ·C ·H23)(S3)

lrn(out(S1) ·H23 · C )(S3)

<1

(35) So our hypothesis becomes

√

π2/π3 <
odds(l2)

odds(l3)
· (something < 1)

<
odds(l2)

odds(l3)

3A = Arabic; E1, E2 = English; E/A, E/J, E/M = L2 English (L1 = Arabic, Japanese, Mandarin); F = French;
Gk = Greek; H = Hindi; I1, I2 = Italian; J = Japanese; MY = Mòbà Yoruba; N = Ndebele; Sh1, Sh2 = Shona; So
= Sotho.
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I.e., if HH is more likely (by a given margin) to be innovated, then it must enjoy an advantage
in either analytic or channel bias. The phonetic results indicate that the advantage is not in
channel bias, so it must be in analytic bias, and hence analytic bias must favor HH by the given
margin.

(36) Stimuli: MBROLA-synthesized C1V1C2V2 words with inventory /t k d g/ /i u æ O/. Two
patterns:

a. “HH pattern”: Vowels agree in height, instantiating a height-harmony pattern.

b. “HV pattern”: V1 high iff C2 voiced, instantiating what would be a phonologization of the HV
precursor.

(37) The H isomorphism relating the HH and HV stimuli simply swaps the value of the voicing
feature of C2 with that of the height feature of V2: /taku/ → /tagO/ , etc. Thus, the number
of /ak/ stimuli in an HV set equals the number of /a. . . O/ stimuli in the corresponding HH
set.

(38) Experimental paradigm (based on Moreton (2008, Exps. 1 and 2)):

a. Study Phase: Listen to pattern-conforming words through headphones, repeat into micro-
phone. 32 words × 4 repetitions, randomized in blocks.

Pattern conformity Training condition
HH HV HH HV

+ + 16 16
+ − 16
− + 16
− −

b. Test Phase: Listen to pairs of new words, choose the one that you think is “a word of the
language you studied”. 32 pairs in two counterbalanced blocks of 16, random orders in block
and pair. Each pair pits one pattern-conforming item against one pattern-nonconforming
item:

Pattern conformity Studied pattern
HH HV HH HV HH HV

+ + vs. − − 16 16
+ − vs. − + 16 16

(39) Properties of this design:

a. For half of the Test pairs, the correct response depends on the Study pattern; for the other half,
it does not. Allows effects of learning to be separated from those of pre-existing preferences.

b. Does not test generalization to new vowels or new combinations of vowels (i.e., does not
distinguish between learning vowel harmony and learning a list of vowel-vowel sequences).
(Same applies to speakers of real vowel-harmony languages too, of course.)

(40) Participants: 18 native speakers of American English. None had studied or otherwise learned
a language with vowel harmony. One explicitly noticed pattern (post-experiment questionnaire)
and was replaced.
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(41) Theory applies in ideal circumstances, but real-life experiment is not ideal. Use logistic regres-
sion to model out nuisance factors (mixed-effects mode with Participant as a random effect).

This exp. was part of a series of 6 that were very similar to each other. Regression coefficients used
in this analysis were those that could not be eliminated from at least one of the 6 analyses.

Coefficient Estimate SE z Pr(>| z |)
(Intercept) 0.27419 0.19609 1.39830 0.162024
Studied HH 0.71606 0.27884 2.56804 0.010228 *
V1 = V2 –0.25962 0.20536 –1.26420 0.206160
2nd half –0.27877 0.24170 –1.15339 0.248750
Studied HH × 2nd half –0.05977 0.35390 –0.16889 0.865882
HH-nonconforming 0.10146 0.13140 0.77217 0.440015
1st in pair 0.46502 0.17679 2.63042 0.008528 **

(42) We want a confidence interval (95%, let’s say) for A23 = odds(l2)
odds(l3) .

a. Two coefficients matter: β0 = 0.27419 (s.e. = 0.19609) and β1 = 0.71606 (s.e. = 0.27884).
Randomly generated 1,000,000 of each from the respective normal distributions.

b. pHV = p3 = exp(β0)/(1 + exp(β0)); pHH = p2 = exp(β0 + β1)/(1 + exp(β0 + β1)).

c. odds(l2), odds(l3), and A calculated as in (24)

d. About 8.1% of the A23s were infinite (happens when β0 < 0, and hence l3 = 0).

e. Median was 5.66; (geometric) mean of finite values was 5.90. 95% of values were above 2.08.

(43) Comparison with hypothesis:

Quantity Lower Mean Upper
√

π2

π3

strict 1.81 3.89 ∞
lax 1.34 2.41 6.00

odds(l2)
odds(l3) 1.44 5.66 ∞

⇒ Our backup position is strongly supported; there is analytic bias favoring SHH over SHV .

At a more precise quantitative level, the results are numerically encouraging (Â23 is larger than
the other two means), but the confidence intervals are much too wide to tell for sure which one is
bigger.

5 Discussion

(44) What can we conclude from the example? To what extent have we explained the prevalence of
HH over HV patterns in real-world phonologies?

(45) Can we run the predictive chain in the other direction?

(46) What kind of learner would satisfy the requirement in (21)? Is it a reasonable learning model
for phonology? Do these results support the hypothesis that real learners are like that?
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(47) Suppose your preferred learning model doesn’t satisfy (21). How would you derive predictions
from it about lab and natural biases? How precise could those predictions be?

(48) Channel bias, like analytic bias, is stated in terms of its effect on the learner (see 14 above).
Can channel bias, so defined, be measured in the lab?

(49) Are we guaranteed to be able to find an H23 that satisfies the requirements in (13)? Under
what circumstances might we not? What implications would that have—could we still, for example,
compare the analytic or channel bias between S2 and S3?
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