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(1) At least some constraints don’t come for free in the initial state; the learner has to induce them
from phonological data. Cogent examples: constraints which. ..

a. refer to specific lexemes (e.g., McCarthy and Prince 1993; Fukazawa 1999; Pater 2000; Ota
2004; Pater 2007; Coetzee and Pater 2008; Pater 2009; Becker 2009)

b. refer to specific lexical strata, inflectional paradigms, or other language-particular classes (e.g.,
Benua 1997; Alderete 1999; Ito and Mester 2001; Flack 2007; Inkelas 2008)

c. refer to phonetically arbitrary segment classes that do not recur across languages (e.g., Bach
and Harms 1972; Anderson 1981; Buckley 2000) or enforce idiosyncratic requirements (e.g.,
Prince and Smolensky 1993, 101).

(Separate issue, not addressed here: constraint induction from phonetics (“inductive grounding”,
Hayes 1999).)

(2) How and when are phonological markedness constraints induced? Proposals in the OT/HG
literature fall into two main categories:

a. Exhaustive search: Learner checks all of a set of possible constraints, keeping those that best
satisfy criteria (Hayes and Wilson, 2008; Wilson and Gallagher, 2018).

b. Error-patching: Learner identifies a particular error (or class of errors) and makes a constraint
against it (Adriaans and Kager, 2010; Pizzo, 2013; Pater, 2014). With positive constraints
the learner can identify correct forms and make constraints that reward them (Boersma and
Pater, 2007).

(3) Alternative: Fwvolution. Constraints breed with variation and selection. Evolutionary Winnow-
MaxFEnt architecture: Constraints interact via Max Ent HG, but weights are population sizes, weight
update is population growth or shrinkage in response to fitness-based selection, and constraint
generation happens via mutation and recombination (Moreton 2010b,a,c).

(4) Contents of this talk:

§1 Max Ent/HG weights as population sizes: micro-constraints in a macro-constraint

§2 Macro-constraint weight update as micro-constraint reproduction. Implements (a variant of)
Winnow-2 (Littlestone, 1988), shown here to converge.

§3 Markedness constraints as subtrees of candidates/stimuli
84 Mutation and recombination of subtree constraints

65 Model property: Abrupt learning

86 Model property: Constraints prime related constraints

§7 Discussion: Inductive biases. Limiting behavior approximating other models.
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departmental colloquium (April 9, 2010), and at the Workshop on Grammar Induction (Cornell University, May 14,
2010). The research was supported in part by NSF BCS 1651105, “Inside phonological learning”, to E. Moreton and
K. Pertsova. Address for correspondence about this talk: moreton@unc.edu.



1 Weights as population sizes in a Max Ent/HG learner

(5) In a Harmonic Grammar framework (Legendre et al., 1990), without changing the harmony of
any candidate, we can replace any constraint of weight w with k£ “micro-constraints”, i.e., clones of
that constraint, each with weight w/k:

Macro-constraints: *CrONS MAX
Weights: 4 3
Micro-constraints: | *CpONs ;| *CpONs | *CpONs | *CpONs | Max | Max , Max
Weights: I S R
Jblib-dsu/ | | | -
[bJib.dzu] o I I H=-4
—[fib.d3u] ! ! ! Koo ok H=-3

For higher resolution, we can replace a constraint of weight w with w/( constraints that each give
¢ marks (e.g., if we want two decimal places of precision, let ( = 0.01, and then replace MAX of
weight 3 with 300 micro-MAX’s of weight 0.01).

(6) Luce/MaxEnt choice rule: Given the experimenter’s intended winner % and intended loser ™,
the learner chooses ™ with a probability that depends on the harmonies of the candidates.

exp(3ois, ¥ wi)

exp(Yoi xiw;) + exp(Xr, T w;)

Pr(zt |z%,27) =

This is the Luce choice rule (Luce, 1959, 23) applied to the exponentiated harmonies, i.e., a con-
ditional Maximum Entropy model (Goldwater and Johnson, 2003; Jéager, 2007; Hayes and Wilson,
2008). (Only two-candidate version discussed here, but generalization to k alternatives is straight-
forward.)

2 Weight update as reproduction

(7) When an error occurs, each micro-constraint produces an offspring with probability (1 + €)<,
where € is a learning-rate parameter and d is the difference between the winner’s and loser’s score
on that micro-constraint. Ezxample: Suppose C' is binary (gives either 0 or 1 mark). Then

d Favors Expected offspring Population

—1 loser 1/(14+¢€) <1 shrinks
0 neither 1 stays same
+1 winner 1+e>1 grows

(8) What algorithm does that implement in terms of the macro-constraint weights?

Not the Perceptron or GLA or gradient ascent or other algorithms where the update rule is Aw; =
e(t; — 0;) (Jager, 2007); those increment or decrement each (macro-)weight by a fixed amount that
does not depend on how big the weight already is.

Instead, it implements a variant of the Winnow-2 algorithm of Littlestone (1988). This algorithm
was mentioned as a possible HG learning algorithm by Magri (2013). The proposal here differs from
Winnow-2 in the following ways:



’ H Winnow-2 ‘ Winnow MaxEnt

Task yes-no classification k-alternative forced choice
Response deterministic probabilistic

Constraints || binary and positive (0/1) | can be non-binary or negative

(9) Convergence of Winnow-MaxzEnt: The probabilistic response rule makes Littlestone (1988)’s
convergence proof for Winnow-2 inapplicable. But we can show that if a concept is linearly separable
in terms of the constraint scores, then Winnow-MaxEnt will learn it to any degree of cumulative
accuracy (details in Moreton 2019).

a. Cumulative average of winner-loser harmony gap (relative to total weight) approaches theoret-
ical mazimum. Suppose that there exist nonnegative weights g = (y1,. .., ) and a 6, such
that for every candidate pair (z,z7) in the training/testing set,

S pulaf —27) > 6,> 0 (1)
=1

Let Ayax be the least upper bound on A,, over all u. For a given winner-loser pair (z*,z7),
let 2t =>"" afw; and X7 =>""  x;w;, and let a = (T —X7)/W.

i
Then for any 6 > 0, there exist ¢y and ty such that when Winnow-MaxEnt is run with € = ¢y,

—

t—

a(7) > Amax — 0 (2)

~+ | =
I
o
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for all t > ty (where t indexes trials where an update was made, i.e., errors).

b. Cumulative average log-odds correct grows without bound. Let L(t) be the cumulative average
log-odds of a correct response on Error Trials 1 to ¢ —1 (i.e., the log odds of making an error,
on each trial where an error was actually made). Then

L(t) > Hotmax 1 (exp (Am“@(Ama" - 9)t> —~ 1) (3)

o AmaxEG t dmax

where gy = min;(w;(0)), i.e., the smallest initial weight, and ¢ > t,.

(10) For a fixed 6, the time required to satisfy Inequality 2 is O(logn), i.e., not very sensitive to
the number of (macro-)constraints, which is good news.

These bounds were verified with 10,000 learning simulations using random concepts (see Moreton
2019 for details). They are worst-case bounds, and the simulations (a) came close to the bounds
without crossing them, and (b) showed that the median case (for the given sampling method) is a
lot better than the bound, meaning that the bounds don’t necessarily tell us much about how long
things will take in practice.

(11) = Replacing the familiar Perceptron-like algorithms by Winnow MaxEnt won’t wreck the
learner’s ability to find weightings that work.

(12) Weights can grow or shrink quickly, so population explosion and total extinction are both
possible. Can be dealt with by randomly cloning or deleting micro-constraints to maintain a fixed
population size.



3 Constraints as subtrees of representations

(13) For phonological representations, we can use prosodic and Feature-Geometric trees familiar
from existing phonological theory (Goldsmith, 1976; McCarthy, 1981; Sagey, 1990; Clements and
Hume, 1995). This example uses a slightly simplified version of the one in Gussenhoven and Jacobs

(2005, Ch. 5). The box marks the [head |

(14) A constraint is a representation, rooted at a PrWd, which describes a locus of violation or of
satisfaction. Here is ONSET, a la Smith (2006):

ONSET Matches once in it not in bit twice in th-uh
-1 L PrWd R L PrWd R L PrWd R
| l l
- PrWd - L Syllable R L Syllable R
| L Syllable R| L Syllable R
L Syllable -
>y ‘ab © [Root] [Root] ‘ [Roolt]
[Root] . [Place] - [Place] | [Root] [Root] [Root] [Root] . [Place]
.. [Dor] - [Cor] -[Place] | [p1lace] - [Place] - [PLace] [Dorl]
... [+hi] ... [+ant] .. [Lab] .. [Dor] .. [Cor] o [Dor]. 3 [+hi]
... [-bk] ...[-dist]. [-nas] ... [+hi] ... [+ant] <. - [+hi] o [+bk]
... [-10] . [-nas] .[+cons] | [-pk] ...[-dist] |- [~bk] o [-1o]
[-nas] . [+cons] | . [-approx] . [-10] . [-nas] -+ - [-1o] a tLab]
. [-cons] . [-approx]. [-son] . [-nas] . [+cons] - [-nas] o [+rnd]
. [+approx] - [-son] | .[-1lat] [-cons] | -[-approx] |- [~cons] . .[;nas]
. [+son] . [-1lat] .[-cont] | [+approx] - [-son] . [+approx] . e
. [-1lat] - [-cont] | . [Lar] . [+son] - [lat] Lrson) . [+approx]
[+cont] . [Lar] .. [-spr [-1lat] . [-cont] ’ E;lat]] [+son]
. [Lar] .- [espr | 1] .[+cont] | - [Lar] oot . [-1at]
.. [-spr gll o [+voil | [rar] .. [+spr - [Lar] [+cont]
gl] .. [-voi] [-spr | &1 . .][_Spr . [Lar]
) .. _ . gl .
.. [+voil gl] ' - [-voi] . [+voi] .. [-spr
.. [+voil gl]
.. [+voil
(15) Further illustrations of the Subtree Schema:
*CPLXONS NoCopa *NC
-1 -1 -1
| | |
- PrWd - - PrWd - - PrWd -
| |
- Syllable - - Syllable -
- Syllable R L Syllable -
[Root] [Root] [Roo‘t] [Roo‘t]
[Root] [Root] [Root] . [+nas] . [Lar]
.. [-voi]




Coronal palatalization CoODA-COND|voice] Intersonorant voicing PRWD> oo
-1 -1 -1 -1
| | | |
- PrWd - - PrWd - - PrWd - L PrWd R
| | |
- Syllable - - Syllable R /\ - Syllable -
| - syll -
yllable R L Syllable
[Root] [Root] [Root] \
. [Place] . [Place] - [-son] [Root] [Root] [Root]
..[Cor] ..[Dor] ' [L[ar] . - [=cons] . [Lar] . [-cons]
...[+ant] ... [+hi] .. Ltvol . [+son] ..[-voi] . [+son]
* AGREE-|high] Nasal Place Assimilation Syllable alliteration
-1 -1 -1
| | |
- PrWd - - PrWd - - PrWd -
- Syllable - - Syllable - - Syllable R L Syllable - L Syllable - L Syllable -
l l | | | |
[Root] [Root] [Root] [Root] [—a Root] [ Root]
. [Place] . [Place] . [ov Place] . [ov Place]
.. [Dor] .. [Dor] . [+nas] . [-cont]
... [+ahi] ...[-ahi]

(16) Properties of the Subtree Schema:

a. Imposes no extra restrictions on markedness constraints beyond those inherited from the
Autosegmental /Feature-Geometric representational system.

b. Supports both adjacent and non-adjacent dependencies (e.g., Nasal Place Assimilation and

AGREE-|high] in 15)

c. Supports lexical exceptions natively.

means continuity between grammar and lexicon.)

(Continuity between representations and constraints

d. Supports Greek-letter variables for AGREE, OCP, reduplication (not discussed here; see More-

ton 2010c)

e. Lends itself to recursive recombination and mutation (see next section)

4 Constraint generation as mutation and recombination

(17) Now we let the micro-constraints reproduce with variation, so that the update rule acts as a
selective force in an evolutionary algorithm.

a. Evolutionary algorithms have long been applied to problems closely related to the ones
addressed here, including evolving receptive fields for inputs to the single-layer perceptron
(Nakano et al., 1995) and evolving tree structures (Cramer, 1985; Koza, 1989).

b. Replication of mental representations with variation, recombination, and selection is a leading
theory of human creativity in other domains (Simonton, 1999, 2004; Dietrich and Haider,

2015).



(18) Variation comes about in two ways:

a. Recombination with other constraints to yield offspring that randomly combine features of
either. The breeding algorithm is recursive; when two nodes are bred, their dependents are
randomly aligned and bred too. Example: Offspring of ONSET and PAL:

-1 +—ONSET PaL— -1
\
- Priid - - Prid -
\ \
L Syllable - - Syllable -
l
[Root] [Root] [Root]
.[Place] .[Place]
.. [Cor] .. [Dor]
...[+ant] ... [-bk]
-1 -1 -1
- PrWd - - PrWd - - PrWd -
\ \
- Syllable - L Syllable -
- Syllable - L Syllable -
1 [Root] [Root]
[Root] [Root] [Root] [Root] [Root] [Root] .[Place] .[Place]
.[Place] .[Place] . [Place] .[Place] .. [Corl] .. [Dor]
.. [Cor] .. [Dor] .. [Cor] .. [Dor] ...[+ant] ... [-bk]
...[+ant] ... [-bk] ... [+ant] ... [-bKk]

b. The offspring then undergoes random mutation. Mutation is recursive (when a node is exposed
to the hazard, so are its dependents). Example: Successive mutations of ONSET.

-1 -1 -1 -1
| | | |
- PrWd - - PrWd - - PrWd - - PrWd -
L Syllable - L Syllable - ///////\\\\\\\ ///////\\\\\\\
| | L Syllable R L Syllable - L Syllable R L Syllable -
[Root] [Root] l l
. [-son] [Root] [Root]
. [-son] . [-approx]
. [-son]

(19) Mutation is insensitive to the data or the state of the model, unlike the error-patching learn-
ers cited in (2) above. Human creativity in other domains may or may not work the same way
(Campbell, 1960; Simonton, 1999; Dietrich and Haider, 2015).

(20) The combination of Winnow MaxEnt, the Subtree Schema, and evolution allows the model to
learn symbolic constraints via a connectionist learning rule.

a. Symbolic constraints avoid two shortcomings that have been pointed out in connectionist in-
termediate nodes, bounded retinal width (Minsky and Papert, 1969) and inability to generalize
to new features (Marcus et al., 1999; Berent et al., 2012).

b. The constraint set does not need to be prespecified, avoiding the combinatorial explosion
found in GMECCS (Pater and Moreton, 2012; Moreton et al., 2017).



5 Model property: Abruptness

(21) Human phonological learning (in nature and the lab) can be abrupt, in that a long period of
apparent stagnation is followed by significant improvement (see refs in Moreton 2018).

(22) Sigmoidal abruptness in an observed learning curve has often been taken as distinguishing
“rule-based” learning by serial hypothesis testing from “cue-based” associative learning by gradual
weight changes (Ashby et al., 1998; Love, 2002; Maddox and Ashby, 2004; Smith et al., 2012; Kurtz
et al., 2013). The theory is that while the curve is flat, the learner is serially testing and discarding
incorrect rule hypotheses, and the jump occurs when the correct rule is found.

(23) Evolutionary Winnow-MaxEnt can show similar behavior while searching for a constraint.
Example (from Moreton 2019): Candidates were the initial syllables from the stimuli of Saffran
and Thiessen (2003, 494). The positive stimuli (winners) had the form {p,t, k}V{b,d, g} and the
negative stimuli (losers) {b,d, g}V {p,t,k}. N = 1000 constraints initialized to *(L PrWd R).

Left panel, fell-swoop constraint is discovered and abruptly solves problem. Right side, parochial
constraint (applies only to long-vowel syllables) is discovered first, and delays general solution.
(Gray = correct response, black = error.)
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(24) Prediction: More abrupt learning for constraints that have to be induced vs. constraints that
are given by UG or that were already acquired in L1 (Becker and Tessier, 2011).

6 Model property: Priming and attention

(25) Because new macro-constraints are founded by mutation out of old ones, the Evolutionary
Winnow-MaxEnt model predicts that ezisting macro-constraints prime discovery of new ones that
are similar to them.

Because high-weighted macro-constraints initiate more mutations, the model predicts that new
macro-constraints tend to be mutants of high-weighted old ones.

(Let 7, ; be the probability that a random micro-constraint in C; will breed a micro-constraint in
C; on the next error trial. Then the probability of discovering C; from C; is approximately w;m; ;,

7



if 7; ; is small. The bigger w; is, the higher that probability.)

(26) Simple, concrete illustration: Stimulus space is the set of all (C)V(C) € {0,[p,t,k]}u{0,[p,t,k]}.
Pattern A has two place restrictions on the coda; Pattern B has one on the coda and one on the
onset:

Pattern A Pattern B
Unviolated *[-syll, +Dor]], (=NODORCODA) *[=syll, +Dor]], (=NoDoOrRCODA)
constraints *[-syll, +Lab]], (=NOLABCODA) *,[[-syll, +Lab] (=NoLABONS)
Positive u, ut, pu, put, tu, tut, ku, kut u, up, ut, tu, tup, tut, ku, kup, kut

Negative up, uk, pup, puk, tup, tuk, kup, kuk uk, pu, pup, put, tuk, kuk

(27) To make analysis easier, turn off recombination to make all reproduction asexual mutation.
The mutation distances between the critical constraints are then
a. Condition A: 2. From *[-syll, +Lab]], to *[-syll, +Dor]|,, delete [+Lab], insert [+Dor]
b. Condition B: 4. From *[-syll, +Lab]], to *,[[-syll, +Dor], delete [+Lab], insert [+Dor], unset
right boundary, set left boundary.

(Same holds for other micro-constraints that instantiate these macro-constraints)

(28) Discovering either of the critical constraints should therefore prime discovery of the other better
in the A condition than in the B condition. Concretely, we expect that in Condition A, as compared
to Condition B,

a. time between discovery of the two constraints will be smaller

b. the weights of the two constraints will be more strongly correlated

c. the harmonies of the critical stimuli (labial- and dorsal-final in Condition A, labial-initial and
dorsal-final in Condition B) will be more strongly correlated

(29) Simulation parameters: Mutation rate of x4 = 0.01! learning rate of ¢ = 0.05, a population of
N = 1000 constraints initialized to * (L PrWd R), and a weight quantum of ( = 0.01. Time limit of

500 errors, 1000 trials, or 24 hours of real time. 20 paired replications in each condition.

(30) Prediction: Time between discovery smaller in A than B: v

Discovery of
*o[[-syll, +Lab] or
*[=syll, +Dor]], *[-syll, +Labl], Abs. diff.
Median: A 144 168 48
B 433 335 271

The difference was smaller for the A condition than the B condition in 13 pairs, longer in 3 pairs,
and NA in 4 pairs (the ones where the B learner never discovered either constraint). The difference
is significant (binom.test (13,3): 95% CI is [0.54, 0.96], p = 0.021).

(31) Prediction: Weights of the two constraints more strongly correlated in A than B: v" Horizontal
axis: w(*[-syll, +Dor]|],) in both conditions. Vertical axis: w(*[-syll, +Lab]|,) in A (black), w(*,[[-
syll, +Lab]) in B (red).

T.e., the probabilities of the following mutations were set to 0.01: add prosodic constituent, delete prosodic
constituent, toggle prosodic boundary assertion, gain unary feature, lose unary feature, gain binary feature, lose
binary feature, invert binary-feature coefficient.
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(32) Prediction: Harmonies of the critical stimuli more strongly correlated in A than B: v (Plots
omitted; look almost exactly like those in (31).

(33) Attention-like effects: Clues in the data can cause the learner to search some regions of con-
straint space more intensively. Here, the constraint *[-syll, +Dor]], (critical in A and B conditions)
is one mutation away from *[-syll]], (i.e., NOCODA). As the table shows,

Median trial number

Event A B
*[-syll]], discovered 20 21
*[-syll]], weight peaks (value) 591 (0.865) 237 (0.1)
*[=syll, +Dor]], discovered 144 443

a. *[-syll]], is discovered early in both A and B
b. *[-syll]], is better supported in A (4/8 pos. vs. 0/8 neg.) than in B (3/8 pos. vs. 1/8 neg.),so
once discovered, it gains weight faster:
peak weight/time to peak

A 0.865/591 = 0.00146
B 0.1/237 = 0.00042
c. More weight in *[-syll]], means more opportunities to spawn *[-syll, +Dor|],, so A gets there

first.



d. The A learner “notices” that codas matter, i.e. up-weights *[-syll]],.

e. That “focuses its attention” on the coda position (by allowing the approximate solution *[-
syll]], to elbow out other constraints).

f. This “focused attention” results in a more-intensive search among neighbors of *[-syll]],,
which soon finds both critical constraints. R&D work that helps find one constraint also helps
find the other.

(The critical constraints then outcompete the approximate constraint and drive its weight
down.)

g. In the B condition, it takes longer to discover the critical constraint because “attention” is
divided between the onset and coda positions (the data does not “call attention” to one more
than the other).

7 Discussion

(34) Inductive biases: Constraint interaction via Max Ent HG + weight update via fitness-based
selection + constraint generation via mutation and recombination — characteristic inductive biases
which affect both the end state and the learning path. How might they show up empirically, in the
lab or in nature?

a. Sharing: The learner favors grammars where the macro-constraints share formal components.
(E.g., NODORSALCODA and NOLABIALCODA in §6.)
Using data sampled from P-Base (Mielke, 2008), Carter (2017) found that languages in fact
tend to re-use phonological features: The probability that a language which uses Feature F'
in IV classes uses it in N + 1 classes increases with N (i.e., a preferential attachment process).
Sharing bias is distinct from a generality bias towards patterns that are supported by multiple
overlapping constraints (Pater and Moreton, 2012; Moreton, 2012).

b. Oversharing: Intermediate grammars can overgeneralize the shared components. (E.g., NoCoDA
in §6.)
In segment-class-learning experiments with adults, preference for conforming-old and conforming-
new over nonconforming segments precedes preference for conforming-old over conforming-new
segments (Linzen and Gallagher, 2014, 2017). The Hayes and Wilson (2008) Max Ent learner
predicts the opposite time course (Linzen and O’Donnell, 2015).

c. Nepotism: Weighty macro-constraints can maintain relatives above their rightful level (even
in the end state). (E.g., NOCODA is continually replenished from NODORSALCODA and No-
LABIALCODA as the simulation continues.)

In segment-class learning with adults, generalization to untrained segments is stronger when
they are more similar to trained segments (Cristid et al., 2013). Prickett (2018) showed that
GMECCS (Moreton et al., 2017) underpredicts the difference, but that the fit can be improved
by making weight updates “leak” between featurally-similar constraints.

The predictions here may be bizarre; e.g., that a language with high-weighted NoCoDA would
also show TETU effects against onsets, since NOONSET is a close relative.

If the mutation rate decreases later in learning, nepotism is reduced.

10



(35) Limiting behavior: Varying the parameters causes Evolutionary Winnow-Max Ent to resemble
qualitatively different models:

a. Large population, small weight quantum: Approximates a constraint-based model whose initial
constraint set contains all possible constraints up to a certain size (IMECCS/GMECCS, Pater
and Moreton 2012; Moreton et al. 2017). The reason is that the mutants created on any error
trial will sample the space of possible constraints densely.

b. Small population, large weight quantum: Approximates a serial hypothesis-tester that keeps
trying categorical rules until it finds one that works. These models, common in the psychology
literature on concept learning, normally incorporate a bias towards syntactically “simple” rules
(Shepard et al., 1961; Nosofsky et al., 1994; Feldman, 2006; Ashby et al., 2011; Goodwin and
Johnson-Laird, 2013). Can be achieved here by setting initial state to a simple constraint,
and making deletion more likely than insertion in mutation.

c. Stimuli (candidates) added to constraint set after each trial: Approximates a learning strategy
of memorizing stimuli. Mutation causes gradual “forgetting”.

= May provide continuity with psychological models of non-linguistic category learning (Feldman,
2006; Vigo, 2013); Gluck and Bower 1988; Shepard et al. 1961; Nosofsky et al. 1994; Feldman 2000;
Mathy and Bradmetz 2004; Feldman 2006; Lafond et al. 2007; Bradmetz and Mathy 2008; Vigo
2009; Goodwin and Johnson-Laird 2011; Kurtz et al. 2013; Gluck and Bower 1988; Moreton et al.
2017.
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