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Abstract

Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a com-

parative approach. Analogous inductive problems arise in phonological and visual pattern learning.

Evidence from three experiments shows that human learners can solve them in analogous ways, and

that human performance in both cases can be captured by the same models. We test GMECCS (Grad-

ual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural

Cue Model (Gluck & Bower, 1988a) in a Maximum Entropy phonotactic-learning framework (Gold-

water & Johnson, 2003; Hayes & Wilson, 2008) with a single free parameter, against the alternative

hypothesis that learners seek featurally simple algebraic rules (“rule-seeking”). We study the full typol-

ogy of patterns introduced by Shepard, Hovland, and Jenkins (1961) (“SHJ”), instantiated as both

phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2

found that both phonotactic and visual patterns that depended on fewer features could be more difficult
than those that depended on more features, as predicted by GMECCS but not by rule-seeking.

GMECCS also correctly predicted performance differences between stimulus subclasses within each

pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learn-

ing) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude

that similar cue-based cognitive processes are available for phonological and visual concept learning,

and hence that studying either kind of learning can lead to significant insights about the other.

Keywords: Phonotactic learning; Concept learning; Implicit learning; Inductive bias; Complexity;

Maximum Entropy; Replicator Equation

1. Introduction

This paper brings together two lines of research that until now have been pursued com-

pletely independently: the study of the learning of phonological patterns, and of visual
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concepts. Both of these research traditions aim to uncover the inductive biases that

humans bring to learning featurally defined patterns. Both of them do so using learning

experiments and learning models, which often find similar results and use similar archi-

tectural ideas. By directly comparing human learning of isomorphic phonotactic and

visual instantiations of a set of six well-studied benchmark patterns, this study found evi-

dence that (a) unlike in benchmark visual studies, phonotactic patterns that depended on

fewer features can be more difficult; (b) unexpectedly, the same can be true for visual

analogs of phonotactic patterns; and (c) human performance in both domains, at both

coarse and fine levels of aggregation, can be accounted for by a new formal model that

develops, synthesizes, and simplifies ideas from both literatures. The benefits of this

cross-fertilization, we argue, flow both ways, with ideas and results in phonology leading

to new findings in concept learning, and vice versa.

1.1. Pattern learning across domains

In laboratory studies of artificial phonology learning, participants are exposed to a

novel pattern that holds over the training data, and then tested on their knowledge of the

pattern. To take a simple example, all of the trained words might be constrained to have

initial consonants of a particular type. Types of consonants and vowels are defined in

terms of phonological features (see Hayes, 2009, for an introduction). One such feature is

[+/�voice], which separates voiced consonants like [d] and [g] from voiceless ones like

[t] and [k] (voicing is produced through vibration of the vocal cords). Consonants are also

classified in terms of place of articulation: [d t] are coronal, articulated with the tip of the

tongue against the alveolar ridge, while [k g] are dorsal, articulated with the back of the

tongue against the velum. The classification of these four sounds by these two binary fea-

tures is illustrated in Fig. 1a.

If we restrict the initial consonants of words to two of these four sounds, then there

are two formal types of pattern that we can create which divide the set of sounds into

two equal-sized halves. One is a simple one-feature affirmation. For example, the single

feature [+voice] captures the set [d g], allowing us to characterize a pattern in which [da]

and [gi] are allowable words, and [ti] and [ka] are not. The other is an exclusive-or or if-

and-only-if pattern involving both features. For example, the set [d k] shares no single

feature that separates it from [t g], but it can be defined as sounds that are either [+voice]
and coronal, or else [�voice] and dorsal (i.e., that are [+voice] if and only if they are

coronal). As we discuss in our review of this literature in Section 2.2, studies with both

Fig. 1. A pair of binary features classifying sounds and objects.
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infants and adults, using a variety of features, have found that patterns of the first sort are

easier to learn than those of the second. It is worth noting, though, that these studies typi-

cally use more than just two features over four sounds.

Visual concept learning studies (also referred to as category learning) similarly train

participants on a novel pattern, one that holds over a set of visually presented objects (lit-

erature reviewed in Section 2.1). The features in these studies are properties of the

objects. Fig. 1b provides an example parallel to the sounds in using just two binary

dimensions: shape (circle or triangle) and color (black or white). As might be expected,

visual concepts defined by a single-feature affirmation are also easier to learn than those

defined by an exclusive-or or if-and-only-if pattern, again with the caveat that the spaces

of possible concepts are usually larger than in the current simplified example.

Looked at this way, the basic formal relationship between phonological pattern learn-

ing and visual concept learning is obvious, but as far as we know, no prior research has

capitalized on this connection (though see also Moreton, 2012; Moreton & Pater, 2012a,

2012b; Moreton & Pertsova, 2012; Pater & Moreton, 2012). There are several benefits to

studying phonological and visual concept learning together.

1.2. “Cue-based” and “rule-based” learning models

Research on phonological learning can benefit by investigating potential parallels with

the vast range of experimental and computational modeling results on visual concept

learning. This paper focuses in particular on two architecturally defined classes of catego-

rization-learning model, which we will call cue-based and rule-based. In both kinds of

model, an early stage of processing assigns to each stimulus a description in terms of dis-

crete features corresponding closely to sensory dimensions, for example, [�large] or

[�voiced]. Classification and learning are based on Boolean (logical) formulas involving

these dimensions. However, cue- and rule-based models use these formulas in very differ-

ent ways. The differences are highlighted in the following definitions.

By cue-based, we mean a model that (a) makes classification decisions based on a

weighted sum of a set of cue detectors, where a cue is a Boolean function of a subset of

the stimulus features, (b) learns by gradually adjusting these weights, and (c) may penal-

ize changes in the weights of particular cues. A familiar example from category learning

is the Rescorla–Wagner model of classical conditioning, in which the cues are the pres-

ence or absence of the individual elements of a compound stimulus, the weights are their

associative strengths, and the associability (salience) parameters can make the weights of

some cues easier to change than those of others (Miller, Barnet, & Grahame, 1995;

Rescorla & Wagner, 1972).

By rule-based, we mean a model that (a) makes classification decisions using a rule

that is a Boolean function of a subset of the stimulus features, (b) learns by testing a

small number of hypotheses (candidate rules) at a time (usually just one), and (c) may

penalize hypotheses in proportion to their syntactic complexity when stated in the mod-

el’s rule formalism (usually, in proportion to the number of features involved). A well-

known example is RULEX (Nosofsky, Palmeri, & McKinley, 1994), which tries each
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possible one-feature affirmative rule (“has Feature X”) before proceeding to two-feature

conjunctive rules (“has Feature X and Feature Y”); others include the Boolean-complexity

model of Feldman (2000, 2003, 2006) and the rule subsystem of COVIS (Ashby,

Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Paul, & Maddox, 2011).

These two categories, cue-based and rule-based models, are of course not exhaustive

(for recent reviews, see Ashby & Maddox, 2005; Goodwin & Johnson-Laird, 2013;

Kruschke, 2005, 2008). We have chosen to focus on them for the following reasons. First,

since influential models based on these ideas have been independently developed in both

psychology and linguistics, they are a natural starting point for asking whether learning

principles are shared across domains. Second, the rule and cue ideas occur as components

in hybrid models and in models based on other approaches (e.g., Ashby et al., 1998;

Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Love, 2002; Maddox & Ashby,

2004; Smith et al., 2012). Third, the models that have been actually proposed in these

two groups make a number of qualitatively different predictions as to relative pattern dif-

ficulty, whether learning is gradual or abrupt, whether learning is implicit or explicit, and

how learning difficulty is affected by factors like stimulus verbalizability, deliberate

versus incidental learning, rule-seeking instructions, and other task conditions. It is an

important question whether these behavioral differences are a necessary consequence of

the architectural differences.

A final reason to focus on rule- and cue-based learners is that, at an abstract level, they

are kin to (and hence informative about) models with other architectures. Rule-based

learners, for example, are related to decision-bound models (Fific, Little, & Nosofsky,

2010), and cue-based models are related to exemplar and prototype models of classifica-

tion via kernel methods (Ashby & Alfonso-Reese, 1995; J€akel, Sch€olkopf, & Wichmann,

2009). We show in this paper that any member of a large class of Maximum Entropy

cue-based learners is equivalent to a member of a larger, and hitherto unexplored, class

of similarity-based learners that are based on the Replicator Equation of evolutionary

biology (Karev, 2010). Thus, although this paper focuses on rule- and cue-based learners

as defined above, the results may prove to be relevant to much larger classes of model.

As we have just noted, cue- and rule-based models of concept learning share ideas

with linguistic grammar formalisms (see especially Prince & Smolensky, 1993, and

Chomsky & Halle, 1968, respectively). The relationship can be very close; for example,

the cue-based model that we develop and test in this paper is derived from a constraint-

based phonological learning model (Hayes & Wilson, 2008), and it is very similar to a

well-known cue-based theory of concept learning (Gluck & Bower, 1988a, 1988b). The

kinship can also be more distant, as in the case of rule-based concept learning models

and rule-based grammatical theories. A fundamental difference between rules in the two

domains is that rules in linguistics are typically derivational, in that they map one repre-

sentation to another, while rules in concept learning describe properties of a single level

of representation. An important similarity is that the notion of a bias toward rule simplic-

ity, mentioned above for concept learning models, also figures prominently in linguistics,

as in the evaluation procedure of Chomsky and Halle (1968) (discussed more extensively

in Section 8.2). Further exploration of the relationship between rule-based concept
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learning and (derivational) rule-based grammatical models is an important direction for

future research. Our focus in this paper is on the specific predictions of the cue-/con-

straint-based model that we develop, and the general predictions of rule-based concept

learning models, in particular those that relate to biases favoring featurally simple rules.

1.3. The benchmark patterns of Shepard et al. (1961)

Research in visual concept learning has focused on a family of concept types intro-

duced in the seminal study by Shepard et al. (1961), which starts with the observation

that a space of concepts defined by three binary features can be divided evenly in six log-

ically distinct ways. (For a larger catalog of concept families, see Feldman, 2000, 2003.)

The six types of concept are illustrated in Fig. 2, using the three features of shape (circle

vs. triangle), color (black vs. white), and size (large vs. small). The members of one of

the two classes, which we will arbitrarily refer to as IN, are enclosed in boxes; OUT is

unboxed. In Type I, IN can be defined with a single feature value, like black in Fig. 2. A

definition of IN for Type II requires two features, which could be in the form of a logical

biconditional—(black and circle) or (white and triangle)—or equivalently, exclusive or:

either black or triangle, but not both. Types III–V make crucial use of all three features,

but a subset of the members of IN can be defined with just a pair of features: white and

triangle in Fig. 2. Type VI requires all three features to separate any member of IN from

all members of OUT.

Shepard et al. (1961) studied learning of each of these types of visual concept by pre-

senting to their experimental participants all eight objects one at a time. After presenta-

tion of an object, the participant was asked to classify it as a member of group A or of

group B, and was then told the correct classification (i.e., supervised training). Shepard

et al. (1961) found that learning difficulty increased with the number of features needed

to define the concept, with Types III–V being easier than Type VI, presumably because a

subpart of the space can be defined with fewer than three features. This

I > II > III, IV, V > VI ordering has been replicated in a number of studies that adopt

broadly similar tasks and stimuli (see Kurtz, Levering, Stanton, Romero, & Morris, 2013,

for a recent review).

Study of the Shepard et al. (1961) (hereinafter “SHJ”) patterns has been largely moti-

vated by the differing predictions which these (and other) model classes make about their

Fig. 2. Representatives of the six logically distinct types of equal partition of a stimulus space defined by

binary features of color, shape, and size. Boxes enclose one class. After Shepard et al. (1961).
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relative difficulty. The particular kinds of phonological pattern that we are concerned with

here are called phonotactics: the restrictions that hold of well-formed words in a language

(in contrast to alternations, which refer to changes in the shape of words or morphemes

across phonological contexts). The extant phonotactic learning results examine only a

subset of the SHJ types and could be captured by an extremely wide range of learning

models. In Section 3 we introduce GMECCS (Gradual Maximum Entropy with a Con-

junctive Constraint Schema), a cue-based general concept-learning model that can be

applied to phonotactic learning. As we discuss in that section, GMECCS is a relative of

the Maximum Entropy phonotactic learner of Hayes and Wilson (2008). We test its pre-

dictions against those of rule-based models using all six Shepard types in unsupervised

phonotactic learning (Experiment 1, Section 5) and unsupervised learning of visual ana-

logs (Experiment 2, Section 6). The results of these experiments differ from the classic

SHJ difficulty order. They are consistent with GMECCS rather than with rule-based alter-

natives, except that clear signatures of rule-based learning were found for visual patterns

of Type I and one subtype of Type II. Since supervised training has been found to facili-

tate rule-based learning, we also test phonotactic learning of Types I, II, and IV using a

supervised paradigm (Experiment 3, Section 7), but still find no evidence of rule-based

phonotactic learning.

1.4. Benefits of cross-fertilization

The results of these experiments also illustrate the benefits that unifying the study of

phonological and visual concept learning can have for our general understanding of con-

cept learning. As we discuss in Section 3, GMECCS uses ideas from the Configural Cue

Model of Gluck and Bower (1988a, 1988b). The Configural Cue model has been revised

or replaced in the visual concept learning literature because it fails to capture the classic

I > II > III, IV, V > VI order found by SHJ and many subsequent researchers in visual

concept learning (see esp. Nosofsky, Gluck, Palmeri, McKinley, & Gauthier, 1994). Since

our empirical results differ from this order in ways that are consistent with the predictions

of the cue-based GMECCS, those results argue for a reconsideration of cue-based learn-

ing models. In this, our results in phonotactic and visual learning confirm and extend

recent findings that the SHJ difficulty order, for all its “classic” status, is surprisingly sen-

sitive to task conditions and the physical instantiation of the stimulus dimensions (Kurtz

et al., 2013).

The joint study of phonological and visual concept learning also presents a new oppor-

tunity to address fundamental questions in cognitive science: Which aspects of language

(if any) are acquired using specialized cognitive processes, and which are acquired using

domain-general ones? (See recently Chomsky, 2011; Christiansen & Chater, 2008; Evans

& Levinson, 2009; Gallistel, 2011; Jackendoff & Pinker, 2005; Newport, 2011.) Phono-

logical and visual concept learning typically take place under different circumstances and

involve stimuli with different properties, so to answer them satisfactorily, we must control

task and stimulus factors. Taken as a whole, we interpret our results and those of related

studies to indicate that when concept learning is relatively implicit, which is encouraged
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by both lack of verbalizability of features and unsupervised training, it is captured well

by GMECCS and similar cue-based models. This holds of both phonological and visual

concept learning. As learning becomes relatively explicit, as it is in the classic SHJ

experimental paradigm, it is better captured by other kinds of model, including logical

rule models. Evidence for this sort of explicit learning that is well-captured by rule-based

models is thus far confined to visual concept learning; further study is needed of linguis-

tic learning in this respect. All of these issues are treated in more depth in Section 8.

2. Concept learning

2.1. Visual concept learning

The SHJ results have been the focus of intense discussion in the modeling literature.

As we will see in detail in Section 3, pure cue-based models have been unsuccessful in

matching the classical SHJ order; in particular, they incorrectly predict Type IV to be

easier than Type II (Gluck & Bower, 1988a; Medin & Schwanenflugel, 1981). Rule-based

models, on the other hand, have been able to replicate the Shepard order, in whole or in

part, by using inductive bias that makes them less sensitive to patterns that crucially

involve more features (Feldman, 2000, 2006; Lafond, Lacouture, & Mineau, 2007; Nosof-

sky et al., 1994). Selective sensitivity to features, in the form of attentional learning, is

also key in the success of the exemplar-based model ALCOVE in modeling the classic

SHJ results (Kruschke, 1992).

As Kurtz et al. (2013) emphasize, the classical advantage of Type II over Type IV in

human participants can be reduced, eliminated, or reversed by manipulating task and

stimulus parameters. When participants were shown only positive category members

(unsupervised training), overall proportion correct in Type II fell to or below that in Type

IV (Love, 2002). When mention of a rule was omitted from the instructions, the same

thing happened (Kurtz et al., 2013; Lewandowsky, 2011; Love, 2002; Love & Markman,

2003). The stimulus dimensions matter as well. When the dimensions were made some-

what harder to verbalize (e.g., speckled vs. checkerboard fill instead of black vs. white
fill), overall proportion correct in Type II was reduced relative to that in Type IV (Kurtz

et al., 2013, Experiments 2 and 8). The use of perceptually non-separable stimulus

dimensions (e.g., brightness, hue, and saturation) also reduced proportion correct in Type

II relative to Type IV (Nosofsky & Palmeri, 1996). Even when all dimensions are percep-

tually separable, some pairs of dimensions are easier to associate in a Type II pattern than

others (Kurtz et al., 2013; Love & Markman, 2003; Moreton, 2008, 2012).

One response to the discoveries of a mutable Type II versus Type IV ordering has

been to suggest that a rule-based system and a cue-based system compete to control

responses, and that task conditions can determine which system dominates (Ashby et al.,

1998; Love, 2002; Maddox & Ashby, 2004; Smith et al., 2012). When the rule-based sys-

tem is dominant, Type II patterns are learned faster than Type IV patterns. When the

cue-based system is dominant, Type IV patterns are learned faster than Type II patterns.
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Much remains to be done, though, in terms of pinning down the empirical effects of task

and stimulus variables on the relative difficulty of the Shepard types, and in terms of

relating those differences to properties of formal models. For example, when experimental

conditions lead to a preference for Type IV over Type II, one possibility could be that

the task is primarily tapping a prototype-based learning mechanism that can only repre-

sent linearly separable patterns (Medin & Schwanenflugel, 1981). This can be tested by

also examining learning on Types III and V, which are not linearly separable.

2.2. Phonological concept learning

Just as visual concept learning studies in the SHJ tradition aim to uncover human

inductive biases by comparing the learning of minimally different concepts, phonological

learning studies aim to discover whether particular kinds of phonological patterns are

easier to learn than others. The general comparison of interest has been between patterns

that are (well) attested in the phonologies of the world’s languages versus minimally dif-

ferent ones that are not. Many of the specific comparisons have been between patterns

that make crucial use of different numbers of features, with the relatively featurally sim-

ple patterns taken as more representative of natural language phonological systems. These

studies find consistently easier learning for the featurally simpler pattern, using a number

of vowel and consonant features, with a wide range of methodologies, and both infant

and adult participants. Although previous phonological-learning studies have not inten-

tionally addressed the SHJ hierarchy, a number of studies have independently used

phonotactic patterns which can be fitted into it. We describe a few examples here; for a

more extensive review, see Moreton and Pater (2012a, 2012b).

Saffran and Thiessen (2003, Experiments 2 & 3) found that a pattern that distinguishes

[+voiced] [b d g] from [�voiced] [p t k] is learned by English learning 9-month-olds,

while a pattern that separates [b t g] from [p d k], which requires both voicing and place

of articulation, is not. This is essentially a difference between Shepard Type I and Type

II, though it is over a six-, rather than eight-member space (see Fig. 3). The training

methodology used in this study involved a combination of unsupervised training on

pattern induction and word segmentation. In another infant study with training only on

Fig. 3. The phonological patterns used by Saffran and Thiessen (2003, Experiments 2 and 3). The features

are voiced versus voiceless, non-coronal versus coronal, and labial versus velar.
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positive examples, Cristi�a and Seidl (2008) found that English 7-month-olds learned a

pattern that separated [�continuant] [m g n t] from [+continuant] [f z], but not [m n f z]

from [g t], which cannot be differentiated in terms of any single standard feature. This is

also evidence of a Type I pattern being learned more easily than Type II, again with the

proviso that the trained concept space had only six members (testing involved generaliza-

tion to a novel sound).

A Type I advantage was also found using supervised training with adults by LaRiviere,

Winitz, Reeds, and Herriman (1974, 1977), who trained English speakers with feedback to

categorize a set of six or eight syllables into two equal-sized classes. These classes were

defined either by a single feature or in an unspecified “random” way that needed more rel-

evant features. In three out of ten experiments, performance was significantly better for

the single-feature condition than the random condition, and in the other seven it was

numerically better. Evidence for easier learning of phonological Type II than Type VI can

be found in a number of adult studies. Kuo (2009) trained Mandarin-speaking adults on

patterns in which the first member of a word-initial consonant cluster predicted the identity

of the second, using exposure to only positive examples. The initial consonants were [t th

p ph], which can be distinguished by whether they are aspirated (indicated by superscript

[h]) and by place of articulation (coronal [t] vs. labial [p]). The second members were the

glides [j] and [w], which also differ in place of articulation. This study thus had the full

three binary features of the Shepard space, but it compared only Type II (e.g., [pj phj tw

thw] as IN) to Type VI (e.g., [pj thj tw phw] as IN). Kuo (2009) found that two Type II

patterns were better learned than Type VI patterns, in terms of novel IN stimuli being sig-

nificantly more often chosen over OUT stimuli in a forced-choice task.

All of the phonological studies we have discussed so far involve learning of phonotac-
tics, that is, a set of restrictions on the shape of words. Phonotactic learning studies tend

to use unsupervised training, for reasons of ecological validity—outside of the lab, lan-

guage learners only hear positive examples, that is, words that really exist in their lan-

guage. Phonological alternations (changes in the pronunciation of individual words or

morphemes across contexts) do offer a kind of negative evidence. For example, when an

English learner is exposed to the alternating plural morpheme ‘-s’, the fact that it is [s]

following (non-strident) voiceless consonants (as in cats) indicates that it is not [z] (as in
dogs) or [əz] (as in bushes) in that context. Studies of the learning of alternations have

therefore often been run using supervised training, as in Pycha, Nowak, Shin, and Shosted

(2003). In that study subjects were asked to judge the well-formedness of words with a

suffix in the form of either [�ɛk] or [�Λk] and were given feedback on their judgement.

In the trained patterns, the choice of suffix was dependent on the features of the preced-

ing vowel. Like the Kuo (2009) study, there were three binary features, used to create

Type II and Type VI patterns, and again, performance on two Type II patterns was found

to be significantly better than one Type VI. That these findings are robust to changes in

methodology is also shown by a study by Skoruppa and Peperkamp (2011), who exposed

French speakers to spoken passages in their own language that were modified so that

front vowels either agreed in the value of the feature [round] with the preceding vowel

(Type II), disagreed, (Type II), or agreed if mid and disagreed if high (Type VI). Partici-
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pants in the Type II conditions were better at recognizing new pattern-conforming stimuli

than those in the Type VI condition.

It is important to note that when patterns are compared that are equivalent in featural

complexity, natural language attestedness is not a reliable predictor of ease of learning

(Moreton & Pater, 2012a, b).1 For example, Saffran and Thiessen (2003, Experiment 2)

compared two sub-cases of the Type I [+voiced] [b d g] versus [�voiced] [p t k] pattern.

In one, the [p t k] set was restricted to the syllable coda (post-vocalic, boldfaced) position

of CVCCVC words, while [b d g] was restricted to onsets (prevocalic, non-boldfaced

Cs). In the other sub-case, it was voiced [b d g] that was limited to coda position, with [p

t k] in onset. Although a restriction of [p t k] to coda position is much more common

among the phonologies of the world’s languages (Iverson & Salmons, 2011), both pat-

terns were learned equally well. Similarly, Pycha et al. (2003) and Skoruppa and Peper-

kamp (2011) examined two sub-cases of their Type II patterns, ones in which two vowels

either had the same or different specification of a feature. Having the same feature,

known as vowel harmony, is far more common than vowel disharmony, yet neither study

found a statistically significant difference between the two, which is particularly notewor-

thy in that both studies found a significant difference between the Type II patterns and

Type VI. Based on prior results like these, in our experiments we control and test for

effects of the featural structure of patterns, but we do not control for whether the patterns

correspond to ones actually found in natural language or not.

In contrast with visual concept learning, there has been little attempt to computation-

ally model these phonological results (see Wilson, 2006, on modeling of a different sort

of phonological learning bias, whose empirical basis is questioned in Moreton & Pater,

2012b). One reason for this gap in the literature might be that modeling the Type I sin-

gle-feature advantage over Type II, or Type II over Type IV, has not struck anyone as

difficult enough to be interesting. A survey of the learning models proposed for visual

concepts shows that this assumption would in fact be correct: All models that we are

aware of yield the I > II > VI ordering. In the next section, we show that the

I > II > VI ordering emerges from a model that has no explicitly stated bias toward

patterns with fewer features. In fact, this model does not in general prefer patterns with

fewer features, since it also yields III, IV > II. The prediction of quicker learning of

Types III and IV than II contradicts the SHJ results, but we will see that it is in agree-

ment with the results of other experiments, including our own study of the full SHJ

typology in phonotactics.

3. The GMECCS model

This section describes GMECCS, a model of concept learning that is applicable to

concepts defined phonotactically (Pater & Moreton, 2012). The model combines two

main ideas. One is that of a Maximum Entropy (MaxEnt) framework, with training

by gradient descent on negative log-likelihood (see Jurafsky & Martin, 2008, for an

introduction to Maximum Entropy models in natural language processing). This is a
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cue-weighting model that is closely related to established models in psychology and lin-

guistics: in psychology, the single-layer perceptron (Rosenblatt, 1958), the Rescorla–
Wagner model of classical conditioning (Rescorla & Wagner, 1972), and a number of

other variations (reviewed in Sutton & Barto, 1981); in linguistics, Harmonic Grammar

(Smolensky & Legendre, 2006), Optimality Theory (Prince & Smolensky, 1993), and

Stochastic Optimality Theory (Boersma, 1998). In applying gradient descent to phono-

logical learning, we follow in particular J€ager (2007), who pointed out the connection to

the learning procedure used by Boersma (1998). The other main idea is the unbiased

conjunctive constraint set, which provides, as cues available to be weighted, all possible

conjunctions of any number of input feature values. Featural conjunctions make up a

large share of proposals in the Optimality Theory literature (Ashley et al., 2010). The

idea of using them all is adopted from a well-known psychological model of concept

learning, the Configural Cue Model of Gluck and Bower (1988a, 1988b). Thus,

GMECCS combines the constraint set of the Configural Cue Model with the constraint-

weighting algorithm of the MaxEnt phonotactic learner of Hayes and Wilson (2008),

yielding a new model which is equivalent to neither. These relationships are discussed

more fully in Sections 3.1 and 3.3 below.

As we discussed in Section 2.1, replication of the SHJ difficulty order has for decades

been a major criterion by which models of human category learning were judged. The

Configural Cue Model was abandoned because it did not meet this criterion. It has since

become clear that human category learning does not always follow the SHJ order (Kurtz

et al., 2013), and it is therefore time to reconsider whether the principles underlying the

Configural Cue Model may after all correctly characterize learning under certain condi-

tions. Independent developments in phonological theory suggest to us that phonological

learning might be one of those conditions.

3.1. A Maximum Entropy framework for phonotactic learning

MaxEnt models of phonology use weighted constraints to define a probability distribu-

tion over a set of representations (Coetzee & Pater, 2011; Goldwater & Johnson, 2003;

Hayes & Wilson, 2008; Hayes, Zuraw, Sipt�ar, & Londe, 2009; J€ager, 2007; Wilson,

2006). The present model, GMECCS, follows Hayes and Wilson in using MaxEnt to state

a probability distribution over the space of possible word forms, thus creating a phonotac-

tic grammar formalizing knowledge of the relative probabilities of word forms (see also

Daland et al., 2011; Kager & Pater, 2012). It differs from Hayes and Wilson in using a

different constraint set, and a different learning algorithm, and in allowing both positive

and negative constraint weights. The constraint weights are set using a learner that builds

on J€ager’s (2007) application of gradient descent to MaxEnt learning; as we explain

below, we use batch, rather than stochastic gradient descent.

The stimulus space (i.e., the universe of phonological words) consists of the set

fx1; . . .; xng. The model is equipped with constraints c1; . . .; cm that are real-valued func-

tions of x. It is parametrized by a vector w of weights. The weight parameters control

Prðxjjw), the model’s allocation of probability to Stimulus xj.
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The assignment of probabilities to stimuli is illustrated in Fig. 4 for a very small uni-

verse D of phonological representations and a small set of constraints. The constraints in

this example target either a single phonological feature, or conjunction of two features,

that is, +vce and �vce target voiced and voiceless consonants, respectively; +vce^Cor
targets the one consonant that is both voiced and coronal, [d], and �vce^Dor targets

voiceless dorsal [k]. The score in each cell is the number of times the structure targeted

by the constraint occurs in the representation (in this example, none happen to exceed 1).

For each xj, this yields a score vector ðc1ðxjÞ; . . .; cmðxjÞÞ.
The harmony of xj is defined as the sum of its score vector, weighted by the current

weights: hwðxjÞ ¼ ðc1ðxjÞ; . . .; cmðxjÞÞTðw1; . . .; wmÞ. The model’s estimate of the proba-

bility of Stimulus xj is the exponential of its harmony, divided by the summed exponen-

tials of the harmonies of all representations (Zw):

hwðxjÞ ¼
Xm
i¼1

wiciðxjÞ ð1Þ

Zw ¼
Xn
j¼1

exp hwðxjÞ ð2Þ

PrðX ¼ xjjwÞ ¼ exp hwðxjÞ
Zw

ð3Þ

In the example of Fig. 4, the weights were deliberately chosen so that the model captures

a Type II pattern, dividing nearly all of the probability mass equally between [d], which

is both voiced and coronal, and [k], which is neither voiced nor coronal. In practice, the

model starts out with all weights equal to zero (causing it to assign equal probability to

all di), and must learn the pattern-fitting weights from its input p.
The goal of learning is to find the weights that maximize the empirical log-likelihood

L(w) of the model (Della Pietra, Della Pietra, & Lafferty, 1997):

LðwÞ ¼ Eemp½log PrðXjwÞ� ð4Þ

Fig. 4. A Maximum Entropy grammar defining a probability distribution over a small phonological universe.

Constraint weights appear beneath constraint names. The column headed hwðxjÞ shows the weighted sum of

scores for each sound, and PrðxjjwÞ the probability assigned to it by the model, which is proportional to ehwðxjÞ.
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As our learning algorithm, we adopt the version of gradient descent on negative log-

likelihood described by J€ager (2007), in which the weights are changed by an amount

proportional to the difference between the true (empirical) probability-weighted aver-

age score vector and the learner’s current estimate thereof, multiplied by a learning

rate g:2

Dwi ¼ g � ðEemp½ci� � Ew½ci�Þ ð5Þ

Here, Ew½ci� is the model’s current expectation of ci, obtained by weighting each stimu-

lus’s ci score by the probability currently allocated to that stimulus by the model; that is,

Ew½ci� ¼ Rn
j¼1pj � ciðxjÞ. Likewise, Eemp½ci� is the corresponding sum with the model’s

probability estimates replaced by the empirical probabilities (i.e., the true probabilities of

the stimuli in the distribution from which the training stimuli are sampled).

This model is an unsupervised gradual batch learner. It is unsupervised in the sense

that the learning target is a probability distribution over stimuli, rather than an associ-

ation of stimuli to category labels or other output targets. It is gradual in the sense

that the weights (and thus the model’s allocation of probability to stimuli) change by

a small amount on each update cycle. It is batch in the sense that each step is influ-

enced by the entire target distribution, rather than only by a single sample drawn

from that distribution. We chose to use batch rather than on-line learning (i.e., to use

gradient descent rather than stochastic gradient descent) because the batch learner con-

veniently and tractably approximates an average over many independent runs of an

on-line simulation.3 Note that, unlike in some other Maximum Entropy applications in

phonology (Goldwater & Johnson, 2003; Hayes & Wilson, 2008; Wilson, 2006), no

regularization term is used,4 and the learning algorithm is gradient descent on likeli-

hood rather than conjugate gradient descent, Improved Iterative Scaling, or any other

technique.

We show in Appendix A that it is possible to eliminate the weights from this model

entirely.5 The updates can be done directly on the model’s estimated probabilities using

the following update rule:

Dpj ¼ g � pj �
Xn
i¼1

ðciðxjÞ � qiÞ � ðqHi � qiÞ ð6Þ

writing qi and qHi for Ew½ci� and Eemp½ci�, respectively.
This result is advantageous for three reasons. One is that it allows faster simulation,

and thus makes it easier to study the large constraint sets which the conjunctive constraint

schema demands. The second, discussed at greater length in Section 4.1, is that the fac-

tors of the summand have intuitive interpretations in terms of constraint properties.

Finally, as shown in the Appendix, it reveals a connection between GMECCS and the

Replicator Equation of evolutionary biology, which has not previously been studied as a

basis for psychological learning models.
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3.2. Unbiased conjunctive constraints

Because we are interested in how little inductive bias is needed to account for the

facts, the constraint set in this model is chosen to be as generic as possible, following

Gluck and Bower (1988a, b). In a stimulus space defined by N binary features

F1; . . .; FN , a conjunctive constraint ða1F1; . . .; aNFNÞ is one that targets any stimulus

which matches it feature for feature. Each coefficient a can have the values +, �, or �
(i.e., “don’t care”). A conjunctive constraint of order k on N features is one that has

exactly k coefficients that are not �. (In Fig. 4, the constraint [+voice] is a conjunctive

constraint of order 1, while the constraint [+voice]^[Cor] is a conjunctive constraint of

order 2.) Finally, the complete conjunctive constraint set on N features is the set of all

conjunctive constraints on N features, with orders from 0 to N (a total of 3N distinct con-

straints). An example is shown in Table 1. The learners investigated here use only such

complete conjunctive constraint sets.

Conjunctive constraints have been previously proposed in the Optimality Theory litera-

ture, where they make up a large proportion of proposed feature-based constraints (see

the database collected by Ashley et al., 2010). Where this model differs from previous

proposals is that the GMECCS constraint set is unbiased: It includes all of them, making

no attempt to exclude constraints that are implausible for phonetic or typological reasons

(in a model of constraint induction, see Hayes, 1999) or are unsupported by the training

data (Hayes & Wilson, 2008).

3.3. Relationship to previous domain-general learning models

We have just introduced GMECCS as an extension of previous work in phonology. In

psychology, the MaxEnt framework is closely related to the single-layer perceptron intro-

duced by Rosenblatt (1958). The perceptron calculates a weighted sum of activations over

a set of input units that respond to the stimulus. Some versions of the perceptron simply

output the sum; in others, the summed activation is compared to a threshold value to

yield a binary output. The weights are incrementally adjusted by gradient descent or

Table 1

The complete conjunctive constraint set of order 2 on two features

Constraint Order Boolean Function

ð�F1;�F2Þ 0 Always 1

ðþF1;�F2Þ 1 1 iff stimulus is þF1

ð�F1;�F2Þ 1 1 iff stimulus is �F1

ð�F1;þF2Þ 1 1 iff stimulus is þF2

ð�F1;�F2Þ 1 1 iff stimulus is �F2

ðþF1;þF2Þ 2 1 iff stimulus is simultaneously þF1 and þF2

ð�F1;þF2Þ 2 1 iff stimulus is simultaneously �F1 and þF2

ðþF1;�F2Þ 2 1 iff stimulus is simultaneously þF1 and �F2

ð�F1;þF2Þ 2 1 iff stimulus is simultaneously �F1 and �F2
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stochastic gradient descent to minimize the mean squared difference between the output

and the desired output. This update rule is called the “Delta Rule” in the case where there

is no thresholding (Mitchell, 1997, p. 94). If an unthresholded perceptron is given only to

positive category members, and is trained in batch mode to output the value 1 to all of

them, then the Delta Rule is identical to the MaxEnt update rule (Eq. 5), as long as one

is willing to interpret the output activation as the model’s estimate of the probability of

the stimulus (not always a safe interpretation, since the activation value may go outside

of the interval [0, 1]).

The Rescorla–Wagner model of classical conditioning (Rescorla & Wagner, 1972)

adds parameters for differences in featural salience and allows different learning rates

on reinforced versus unreinforced trials, but it is still recognizably a perceptron,

trained by the Delta Rule (Sutton & Barto, 1981). Gluck and Bower’s Configural Cue

Model of visual category learning (Gluck & Bower, 1988a, 1988b) consists of an

unthresholded perceptron whose input units are, in our terminology, a complete con-

junctive constraint set on three features. GMECCS uses the constraint set of the Con-

figural Cue Model in the Maximum Entropy framework, but the predictions of

GMECCS are not identical to those of the Configural Cue Model. The GMECCS pre-

dictions are more accurate in terms of agreement with human performance. Section 4

analyzes the model and derives the predictions, which are compared to human perfor-

mance in Experiments 1–3.

4. GMECCS and the SHJ patterns

The original Configural Cue Model was rejected as a model of human category learning

because it did not match human learning performance. Very early in learning, it predicts

the order I > III, IV > II, V > VI; in a brief middle stage, I > III > IV > II > V > VI; then,
later in training, I > III > II > IV > V > VI—none of which is the I > II > III, IV, V > VI
order found by SHJ (Gluck & Bower, 1988a), leading to the rejection of the model as

empirically inadequate.6

There are, we think, two main reasons to expect that incorporating elements of the

Configural Cue Model into GMECCS might yield useful results. One reason, discussed

above in Section 2.1, is that the human facts are different from what was previously

thought: More recent research shows that the I > II > III, IV, V > VI order is not immu-

table in visual learning (Crump, McDonnell, & Gureckis, 2013; Kurtz et al., 2013; Love,

2002; Nosofsky & Palmeri, 1996). The second reason, to be discussed in this section, is

that the predictions of GMECCS are different from those of the Configural Cue Model:

The obtainable orders in GMECCS are I > IV > III > V > II > VI (early),

I > IV > III > II > V > VI (briefly), and I > III > IV > II > V > VI (thereafter). This will
first be demonstrated in a three-feature stimulus space like the one used in all previous

experiments on the SHJ hierarchy (Section 4.1). We will then show that the same behav-

ior emerges in an eight-feature space like the one used in our own experiments

(Section 4.2).
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4.1. Learning the SHJ patterns in a three-dimensional space

In this section, we first present GMECCS simulation results to show that the model

learns the SHJ pattern types at different rates. Then, we dissect the model’s performance

to show how these differences emerge out of the interaction between Eq. 6, the GMECCS

constraint set, and the arrangement of individual stimuli within each SHJ Type.

4.1.1 GMECCS simulation
Fig. 5 shows GMECCS learning curves for all six types. Each epoch is a single update

using the entire empirical probability distribution as described in Section 3; there is no

sampling and therefore no variance (two successive runs of the simulation produce identi-

cal results). The vertical axis shows the summed probability assigned by the model to all

of the positive stimuli together. Constraint weights started at zero, which results in equal

probability (1/8) for all stimuli, and a summed probability of 1/2 for all positive stimuli

together. GMECCS shifts probability mass onto the positive stimuli fastest for Type I,

and slowest for Type VI. Types III and IV are learned faster than Types II and V. Within

each of these pairs, there is an early advantage for Types IV and V, and a later advantage

for Types III and II. The overall I > III, IV > II, V > VI ordering matches the order that

Gluck and Bower (1988a, p. 166) report for early learning. However, Type II never over-

takes Type IV in GMECCS the way it does in the Configural Cue Model.
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Fig. 5. Learning curves for SHJ Types predicted by Gradual Maximum Entropy with a Conjunctive Con-

straint Schema in a space of three binary features. The vertical axis shows total probability mass allocated by

the model to all of the positive stimuli together. Because the simulations are deterministic, there is no

variance.
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4.1.2 Analysis of the simulation
We now ask what is it about GMECCS that causes faster learning for some SHJ Types

than others. The analysis will focus on the early stage of learning (before the III/IV and

II/V reversals) for three reasons. First, the main between-Type differences are present

from the very outset. Second, the best quantitative GMECCS fit to our human experimen-

tal data occurs at this stage. Finally, the later stages are mathematically less tractable,

and we do not have analytic solutions for all Types.

The goal of the early-stage analysis is to understand the source of the differences in

the initial slopes of the curves in Fig. 5. To preview the conclusion: A positive (negative)

stimulus gains (loses) probability quickly if it shares many constraints with other positive

(negative) stimuli, since shared constraints allow the model’s experience with one stimu-

lus to affect its beliefs about others. Because the GMECCS constraints correspond to

faces, edges, and corners of the SHJ stimulus cubes (see Fig. 6), changing the Type

changes the pattern of constraint-sharing, and hence the speed of learning, in regular

ways.

The correspondence between GMECCS constraints and cube elements is illustrated in

Fig. 6, adapted from Shepard et al. (1961). The cubes show the concepts in a three-

dimensional space corresponding to the three features, with the positive (in-concept) class

indicated with black dots on the vertices. In these diagrams, the top and bottom faces of

the cubes correspond to black and white in the shapes below, left and right to circle and

triangle, and front and back to small and big. For each corner, edge, and face on the cube

(Fig. 6), the unbiased conjunctive constraint schema provides a constraint. Face, edge,

and corner constraints are shown in Table 2. Each of the single-feature constraints corre-

sponds to one of the faces of the cube, each of the two-feature constraints corresponds to

an edge at the boundary of two faces, and each of the three-feature constraints to one of

the vertices at the junction of three faces. If we define the order of a conjunctive con-

straint to be the number of relevant features, then face, edge, and corner constraints have

orders 1, 2, and 3.

Fig. 6. SHJ Types represented on cubes, after Shepard et al. (1961).
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Our analysis of the differences in learning speed across the Types makes use of the

concept of a valid positive constraint—a constraint that targets (assigns a 1) only to posi-

tive stimuli. By valid constraint, we mean a constraint that gives a 1 only to positive

stimuli, or only to negative stimuli.7 Which constraints are valid thus varies from Type to

Type. A valid positive constraint is thus a valid constraint which gives a score of 1 to

positive stimuli only. We use the term partially-valid constraint to mean a constraint

whose value is 1 on more positive than negative stimuli, or on more negative than posi-

tive stimuli. Only Type I has a valid positive single-feature constraint, a face that has

only black dots at its vertices. All of the Types, except Type VI, have valid positive two-

feature constraints, edges that connect two black dots. Types III and IV have three of

these, while Types II and V have only two. This greater number of valid positive two-

feature constraints correlates with the faster learning of Types III and IV; we will now

explain why.

Table 2

The conjunctive constraints and their contribution to the model’s estimated probability of a positive stimulus

(xj) via Eq. A1 at the outset of learning

Discrepancy Specificity

qHi qi ðqHi � qiÞ ciðxjÞ ðciðxjÞ � qiÞ ðqHi � qiÞ � ðciðxjÞ � qiÞ
Order 1: Face constraints (one-feature assertions)

Valid 1 1
2

1
2

1 1
2

1
4

0 1
2

� 1
2

0 � 1
2

1
4

Part-valid 3
4

1
2

1
4

1 1
2

1
8

1
4

1
2

� 1
4

1 1
2

� 1
8

1
2

� 1
4

0 � 1
2

1
8

3
4

1
2

1
4

0 � 1
2

� 1
8

Invalid 1
2

1
2

0 1 1
2

0

1
2

1
2

0 0 � 1
2

0

Order 2: Edge constraints (conjunctions of two features)

Valid 1
2

1
4

1
4

1 3
4

3
16

0 1
4

� 1
4

0 � 1
4

1
16

Invalid 1
4

1
4

0 1 3
4

0

1
4

1
4

0 0 � 1
4

0

Order 3: Corner constraints (conjunctions of three features)

Valid 1
4

1
8

1
8

1 7
8

7
64

0 1
8

� 1
8

0 � 1
8

1
64

Notes. Each dot array depicts the stimuli that receive a 1 from ci. Black and white dots • and represent

positive and negative stimuli, respectively, and xj is marked as . Rotations and reflections are omitted. Col-

umns: qHi is the true expectation of ci in the target distribution; qi is the model’s current expectation; ciðxjÞ is
the value of Constraint ci on Stimulus xj. Not shown is the bias constraint, whose value is 1 for all eight

stimuli. A constraint is valid if it assigns a 1 only to positive stimuli, or only to negative stimuli.
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Every stimulus is supported by (receives a score of 1 from) one corner constraint, three

edge constraints, and three face constraints, but these constraints can differ in the degree

to which they agree or conflict with the categorization of other stimuli. For example, con-

sider the positive stimuli of Type IV. Type IV has a core-periphery structure with one

central stimulus—let us call it x8—surrounded by three peripheral stimuli, which we can

call x4, x6, and x7. The central stimulus is directly supported by its own valid positive

corner constraint, by three valid positive edge constraints, and by three partially valid

positive face constraints. An invalid constraint is one whose value is 1 on equally many

positive and negative stimuli. By contrast, a peripheral stimulus like x7 is directly sup-

ported by one valid corner constraint, one valid edge constraint, and two partially valid

face constraints.

The rate at which probability mass is moving onto a Type is the sum of the rates at

which it is moving onto each positive stimulus, which in turn is determined by Eq. 6. Ini-

tially, all stimuli are assigned equal probability, so differences between stimuli in the rate

of change Dpj depend only on Rn
i¼ 1ðciðxjÞ � qiÞ � ðqHi � qiÞ. Each term of that sum rep-

resents Constraint ci’s contribution of new probability mass to Stimulus xj. Each term is a

product of two factors, which we can call specificity and discrepancy.
Specificity, ðciðxjÞ � qiÞ, measures how atypical xj is on constraint ci, that is, how

specific ci is to xj. Among positive GMECCS constraints, specificity is greatest for a cor-

ner constraint (which awards a 1 to just one stimulus) and least for a face (which awards

a 1 to half of all stimuli). Specific constraints are effective supporters because specificity

provides leverage. For example, when the weight of a corner constraint is increased, the

increase in the probability mass assigned to that stimulus must be balanced by an equal

decrease in the total probability mass assigned to the other seven stimuli; hence, the up-

weighted corner gains seven times the probability mass lost by each of the other stimuli.

Discrepancy, ðqHi � qiÞ, measures the difference between the empirical and the esti-

mated probability with which training stimuli (all positive) get a score of 1 from ci. Each
step on the scale valid corner–valid edge–valid face doubles the number of such positive

stimuli, and hence doubles the discrepancy. For constraints of a given order, discrepancy

is lower for partially valid constraints because they assign a score of 1 to fewer positive

stimuli.

The product of these factors, shown in the last column of Table 2, is the contribution

of each kind of constraint, and they are not all the same. If ci is valid and xj is positive,

then the specificity is ð1 � qiÞ (because ciðxjÞ ¼ 1), and the discrepancy is qi (because
all positive stimuli are twice as probable in the empirical distribution as the model ini-

tially believes they are); hence, each valid ci’s contribution to the sum is qið1 � qiÞ. This
product is maximized when qi ¼ 1=2, that is, when ci is a face constraint, and declines

as ci becomes more specific; thus, positive constraints contribute in the descending order:

valid faces, valid edges, and valid corners. Partially valid faces have lower discrepancy

and fall between valid edges and valid corners.

Of these, the most influential across Types are the valid edges. Only Type I affords a

valid positive face at all, and even then each positive stimulus is supported by two valid

positive edges and only one valid positive face. There are also invalid faces and edges
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(which contribute nothing). Partially valid faces may help learning (if three of the four

stimuli on that face are positive) or hinder it (if three are negative, because in order to

correctly suppress the three negative stimuli, they must also suppress xj). Negative con-

straints also support positive stimuli by taking on negative weights and thus suppressing

negative stimuli; however, negative edge and corner constraints make small contributions

because their specificity for the positive stimulus is low.

From these considerations, we can foresee that, across types, positive stimuli that are

central, in the sense of having two or three positive edge neighbors, will gain probability

mass earliest, and those that are isolated (no positive edge neighbors) gain it latest. This

is borne out when the simulations are broken down into individual stimuli, as shown in

Fig. 7; for example, the central stimulus in Type IV, with three edge neighbors, is learned

faster than the peripheral stimuli, which have only one.

Since learning performance for a type is the average across the stimuli in it, perfor-

mance is determined by the mix of central, peripheral, and isolated stimuli that a type

contains. Type VI is learned most slowly by the model because all four stimuli are iso-

lated. The face and edge constraints are neutral in Type VI, so learning must rely on the

corner constraints. Type I is learned quickly because there are no isolated or even periph-

eral stimuli; face, edge, and corner constraints overlap and reinforce each other. Type II

is slow because all stimuli are peripheral. Type V improves on Type II by having a cen-

tral stimulus, but cancels out the improvement by also having an isolate. Types III and

IV are relatively fast because they have no isolates and one or two central stimuli.

This analysis is valid for the initial state, when all of the stimuli are assigned equal

probability by the model. It remains a good approximation as long as the probabilities

continue to grow or decay exponentially at a rate not too far from their initial values. As

learning progresses, the approximation deteriorates, since in reality these rates change

over time (e.g., the III/IV reversal occurs because the growth rates in Type IV slow down

relative to those in Type III). In the long run, the learner’s assignment of probability con-

verges to the empirical distribution, since the corner constraints allow it to match any dis-

tribution, and gradient descent is guaranteed to converge.

4.2. Generalization across irrelevant features

Phonotactic learning experiments, including our own, typically differ from the classic

experiments of Shepard et al. (1961) and their successors (Crump et al., 2013; Kurtz

et al., 2013; Lewandowsky, 2011; Nosofsky & Palmeri, 1996; Nosofsky et al., 1994;

Smith, Minda, & Washburn, 2004) in more ways than just using phonological rather than

visual stimuli. One major difference is that the stimuli are more complex: Our stimuli are

drawn from an eight-feature space rather than a three-feature space. One, two, or three of

the eight features are used to define the SHJ pattern; the others are irrelevant and vary

randomly. Another difference is that our experiments test generalization to new stimuli

rather than learning of the training stimuli: Participants are familiarized on 32 of the 128

positive (pattern-conforming) stimuli and are then asked to choose between a new posi-

tive stimulus and a negative stimulus. Finally, participants in our experiments are given
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no hints as to which of the eight features are relevant to the pattern, and which ones are

irrelevant distractors. Participants must thus do both “attribute identification” and “rule

learning,” in the terminology of Haygood and Bourne (1965).
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Fig. 7. Probability allocated by Gradual Maximum Entropy with a Conjunctive Constraint Schema to each

of the positive stimuli within each SHJ Type as a function of time. The learning target is (x) = 1/4. (a) In

Types I, II, and VI, all positive stimuli have the same number of positive edge and face neighbors, so there

is only one kind (subtype) of stimulus in each type, and hence only one curve for each type. (b) Type III,

upper curve: two central stimuli; lower curve: two peripheral stimuli. (c) Type IV, upper curve: one central

stimulus; lower curve, three peripheral stimuli. (d) Type V, upper curve: one medial stimulus; middle curve:

two peripheral stimuli; bottom curve: one isolated stimulus. (Three-dimensional stimulus space, unsupervised

training, learning rate g = 0.01.)
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We therefore carried out GMECCS simulations under conditions that were, in the rele-

vant ways, like those of our experiments. The simulations used an eight-feature stimulus

space with 256 stimuli, and the constraint set contained all 6,561 (38) conjunctive

constraints of orders 0 through 8. On each run of the simulation (corresponding to one

participant in the experiment), 32 training stimuli were randomly selected such that there

were eight training stimuli in each positive cell of the pattern (e.g., for a Type IV pattern,

there were eight training stimuli that belonged to the central cell, and 8 that belonged to

each of the peripheral cells). The target (empirical) distribution allocated equal probabil-

ity of 1/32 to the training stimuli and 0 to all other stimuli, including the other positive

stimuli. The learning rate g was 0.01. The two-alternative forced-choice test between a

new positive stimulus xþ and a (new) negative stimulus x� was modeled using the Luce

choice rule (Luce, 2005 [1959]):

Prðxþjxþ; x�Þ ¼ pþ
pþ þ p�

ð7Þ

The resulting generalization-performance curves, averaged over 250 simulations in

each SHJ Type, are shown in Fig. 8. They are qualitatively very similar to the learning

curves for the three-feature model shown in Fig. 5. Performance is always best in Type I.

The next best are Types III and IV. Early on, Type IV performance is slightly superior to
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Fig. 8. Predicted generalization performance (predicted probability of choosing a new positive stimulus over

a negative stimulus) for eight-feature Gradual Maximum Entropy with a Conjunctive Constraint Schema (av-

erage of 250 replications per Type). Chance performance is 0.5. Standard deviation for each curve at every

time point shown is less than 0.015 for Types I–V, and less than 0.026 for Type VI. Standard error of the

mean is standard deviation divided by
ffiffiffiffiffiffiffiffi
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p
. See text for training parameters.
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Type III, but Type III overtakes it later in learning. Likewise, Type V is initially superior

to Type II, but it falls behind later. Type VI is invariably worst. The possible difficulty

orders at different times are I > IV > III > V > II > VI, then I > IV > III > V > II > VI,
and finally I > III > IV > II > V > V.8

In sum, GMECCS has an inductive bias for learning of Shepard Types with an

ordering I > III, IV > II, V > VI. This bias emerges from the interaction between the

Maximum Entropy learner and the complete unbiased conjunctive constraint set, and it

is not independently stipulated. The bias is robust against 32-fold enlargement of the

stimulus space and 243-fold enlargement of the constraint set, and is present for old

(trained) and new (untrained) stimuli alike. Crucially, at no time in learning does

GMECCS replicate the original Configural Cue Model’s prediction that Type II will

overtake Type IV late in learning.9 GMECCS will therefore be disconfirmed if our

experiments replicate the oft-reported advantage for Type II over Type IV (Minda,

Desroches, & Church, 2008; Nosofsky et al., 1994; Shepard et al., 1961; Smith et al.,

2004).

5. Experiment 1: The Shepard patterns in phonological space

There are several reasons to expect that human phonotactic learning should unfold as

described by GMECCS, rather than as described by rule-based models of concept learn-

ing such as RULEX (Nosofsky et al., 1994). Theoretically, GMECCS is derived from

independently motivated linguistic theories of phonotactics and phonotactic learning (see

Section 3), whereas the rule-based models are not. Empirically, cue-based learning of

concepts is facilitated by unsupervised training, incidental (unintentional) learning, and

stimulus dimensions that are hard to verbalize (Kurtz et al., 2013; Love, 2002)—all prop-

erties of the phonotactic learning situation. Experiment 1 is a straightforward test of this

hypothesis. It compares the learning of all six SHJ types in an unsupervised phonologi-

cal-learning paradigm to see whether human generalization performance followed the

I > III, IV > II, V > VI prediction derived in Section 4.2.

5.1. Methods

5.1.1. Stimuli
The stimuli were words of the shape C1V1C2V2, where C ranged over [t k d g] and V

over [i u æ a]. There were four binary phonological features, each of them characteristic

of a specific type of segment in the CV-tier (either vowel or a consonant), and each

occurring in two distinct syllabic positions (either in the first or the second syllable). This

yields a total of 8 binary stimulus distinctions, as summarized in Table 3, and a total of

256 possible word types. The stimuli were synthesized using the MBROLA concatenative

diphone synthesizer (Dutoit, Pagel, Pierret, Bataille, & van der Vreken, 1996). (These

stimuli have been used in several other experiments, including Kapatsinski, 2011; Lin,

2009; Moreton, 2008, 2012).
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For each participant, three of the eight stimulus features were randomly chosen as the

relevant features, and then randomly mapped onto the three logical features defining the

Shepard pattern. The 128 pattern-conforming stimulus words made up the “language” for

that participant. Thus, each participant was trained on a different “language,” that is, a

different instantiation of an SHJ pattern type. Examples are shown in Table 4. Because

the patterns were generated at random, they were almost guaranteed to be “crazy rules”

(Anderson, 1981; Bach & Harms, 1972), phonetically unmotivated and typologically

unattested. The decision to use randomly generated patterns that would lead to “crazy

rules” was deliberate, since our aim was to measure purely structural effects on phonolog-

ical learning. As we noted above, research reviewed in Moreton and Pater (2012a, 2012b)

has in any case shown that effects of phonetic motivation and typological attestedness on

phonotactic learning are weak compared to those of pattern structure.

Twenty-four patterns (“languages”) were generated for each pattern type. Within each

of Types II–VI, six patterns were generated in each of the cells defined by crossing the

two factors Both Same Segment and Both Same Genus. A Both Same Segment pattern

was one where two of the relevant features occurred in the same segmental position, for

example, “C1 is voiced iff C1 is coronal.” A Both Same Genus pattern was one where

two of the relevant features instantiated the same phonological feature, for example, “C1

is voiced iff C2 is not voiced.” Since both factors could not be simultaneously true for

Type II, 12 patterns, rather than 6, were generated for the Type II cell, where both were

Table 3

The stimulus space of Experiment 1

Feature

Stimulus Position Consonants Vowels

r1 r2

C1 V1 C2 V2 k k t g d æ i u

voiced � � – – + +
Coronal � � – + – +
high � � – – + +
back � � – + – +

Note. The eight stimulus features correspond to the eight non-empty cells. Note that each phonological fea-

ture is instantiated by two stimulus features; e.g., Stimulus Feature #1 is [� voiced], and so is Stimulus Fea-

ture #5.

Table 4

Examples of artificial phonotactic patterns instantiating SHJ Types I, II, and IV

L1 (TYPE I): C1 is voiced

digu, gada, dika, gugu, . . .
L2 (TYPE II): C1 is voiced iff V2 is back.

digu, tægi, kagæ gada, . . .
L3 (TYPE IV): At least two of: C1 is voiced, V2 is high, V2 is back

kaku, digu, guki, dæka, . . .
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false. There were therefore three kinds of Type II pattern. In one type, the two pattern-

relevant features occurred in the same segment (e.g., they might have been both in the

first consonant); the factor Both Same Segment had the value 1 (=TRUE) for that pattern,
while the factor Both Same Genus had the value 0 (=FALSE) for that pattern. In another

type, the two pattern-relevant features belonged to the same genus (e.g., one of them

might have been “voicing of the first consonant” and the other “voicing of the second

consonant”); the factor Both Same Genus had the value 1 for that pattern, and the factor

Both Same Segment had the value 0 for that pattern. In the third type (“basic” Type II),

the two pattern-relevant features occurred in different segments and belonged to different

genera (e.g., they might have been “voicing of the first consonant” and “backness of the

second vowel”).

The reason for distinguishing the Both Same Segment and Both Same Genus subcases

is that GMECCS, like all of the other learning and categorization models discussed in this

paper, approaches the learning task without any expectation that particular features will

be more closely related to each other than others. This may be true of humans for the

shape, size, and color of visual stimuli (but see Kurtz et al., 2013, and below on Experi-

ment 2), but we have grounds to suspect that it may not be true of human phonological

learning. If two relevant features of a pattern are in the same segment, a participant could

solve (or partly solve) it by analyzing it as a segmental rather than a featural pattern

(e.g., for a Type II pattern like “C1 is voiced iff C1 is coronal” is equivalent to “C1 is

either [k] or [d]”).

From the 128 pattern-conforming words, 32 were randomly chosen as familiarization

items, subject to the restriction that 8 words represent each of the four pattern-conforming

combinations of relevant feature values. Another 32 were chosen in the same way for use

as positive test items, as were 32 non-conforming items which served as negative test

items.

5.1.2. Procedure
Each participant was seated in front of a computer screen in a sound-proof booth. They

were told that they would learn to pronounce words in an artificial language, and later be

tested on their ability to recognize words from that language. They listened to and

repeated aloud 32 randomly chosen pattern-conforming stimuli four times over. After this

training period, they proceeded to the testing phase, during which they heard 32 randomly

chosen pairs of new stimuli (one pattern-conforming, one not) and tried to identify the

one that was “a word in the language you were studying” by pressing a button on the

screen corresponding to “word 1” or “word 2.” If a participant gave fewer than 10 correct

responses out of 32,10 his or her data were discarded and he or she was replaced. After

the experiment, participants filled out a questionnaire in which they were asked whether

they noticed any patterns that helped them to complete the task.

5.1.3. Participants
Volunteers were recruited from the UNC-Chapel Hill community using flyers and mass

email. They were self-screened for normal hearing and native English. They were paid
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US$7 for the half-hour experiment. Each participant was randomly assigned to one of the

6 language types with 24 participants per type, for a total of 144 participants. An addi-

tional 12 volunteers participated, but their data could not be used (6 had non-native Eng-

lish, 1 interrupted the experiment, 1 failed to meet the 12-out-of-32 accuracy criterion,

and 4 suffered equipment or experimenter error).

5.2. Predictions

Since participants are tested after a fixed number (128) of training trials, this experi-

ment cannot observe learning curves. Instead, each participant’s performance is observed

at a single point along his or her individual learning curve. However, it is clear from the

simulations in Section 4.2 that no matter where that point is, GMECCS predicts general-

ization performance to follow the order I > III, IV > II, V > VI. Rule-based models

which successfully capture the classic SHJ order predict I > II > III, IV, V > VI. The rel-

ative difficulty of Types II and IV is therefore critical (Kurtz et al., 2013; Love, 2002).

Better performance on Both Same Segment or Both Same Genus patterns than on others

would be a sign that participants were influenced by the internal structure of the stimulus,

contrary to the assumption of GMECCS, RULEX, the Configural Cue Model—and indeed

of all of the models considered in this paper—that stimulus features are interchangeable.

Since the use or non-use of internal structure is orthogonal to the question of global

model architecture, the relevant test of GMECCS is its fit to the data once the effects of

internal structure have been removed.

5.3. Results

Fig. 9 shows the mean proportion of correct responses for each subject. Each plotting

symbol represents one participant. The vertical axis is proportion of correct (i.e., pattern-

conforming) responses. Numerical values are shown in Table 5. The performance means

decrease in the order I > IV > III > V > II > VI (excluding the same-segment and same-

genus Type II cases). This differs from the classic SHJ order I > II > III, IV, V > VI, but
matches the I > III, IV > II, V > VI order predicted by GMECCS.

A mixed-effects logistic-regression model was fitted with the lmer function of the lme4
package in R 2.7.1, with a random intercept for each participant. For the Type variable,

Type II was the reference category, and the other Type-conditions were dummy-coded

(e.g., for a participant in the Type VI condition, the factors I, III, IV, and V were all 0,

and VI was 1). Preliminary analysis showed that the Both Same Genus and Both Same
Segment factors had no effect in Types III—VI, so these sub-conditions were collapsed

together within each of these Type conditions.11 They were retained for Type II and

renamed to indicate their restriction to Type II. A Type II pattern for which Both Same
Genus = 1 is a harmony or disharmony pattern (e.g., V1 is [+high] iff V2 is [�high]),

while one for which Both Same Segment = 1 has both relevant features occurring in the

same segmental position.
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Two further factors, Redup and CorrFirst, were included to absorb the effects of aver-

sion to reduplicated stimuli (e.g., [gigi]), and of preference for the first of the two-alterna-

tive forced-choice stimuli. Redup was 1 if the pattern-conforming response on a

particular trial was reduplicated but the nonconforming response was not, �1 if the

reverse, and 0 if both or neither stimulus was reduplicated. CorrFirst was 1 if the pat-

tern-conforming response was presented first, else 0 (Moreton, 2008, 2012).

The fitted model is shown in Table 6. The intercept did not differ significantly from

zero, indicating that performance in the basic Type II condition was not significantly

above chance levels. Significant positive effects were found for the Type variables I, III,
IV, and V, but not for VI; thus, performance was better than Type II (and hence better

than chance) in every Type condition except Type VI. Within Type II, Both Same Genus
did not differ significantly from zero. The significant positive estimate for Both Same
Segment shows that Type II patterns were much easier—as easy as Type IV, and nearly

Fig. 9. Individual participant performance (proportion pattern-conforming responses) for Experiment 1. Plot-

ting symbols for Type II: + = all relevant features are in the same segment analog (Type II-ss); D = all rele-

vant features are of the same genus (agreement/disagreement pattern, Type II-sg); = other.

Table 5

Mean proportion correct in each Type condition of Experiment 1

Type I II II-sg II-ss III IV V VI

Plotting Symbol ▵ +

Mean 0.737 0.567 0.598 0.708 0.668 0.704 0.651 0.594

SD 0.120 0.112 0.123 0.153 0.129 0.091 0.091 0.099

N 24 12 6 6 24 24 24 24

SEM 0.024 0.032 0.050 0.062 0.026 0.018 0.018 0.020

Note. Plotting symbols refer to Fig. 9.
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as easy as Type I—when both of the relevant features occurred in the same segment.

Finally, both of the nuisance factors CorrFirst and Redup had significant effects, indicat-

ing that participants were biased to choose the first of the two response options and to

avoid reduplicated words.

The statistical analysis thus confirms that, unlike in the classic Shepard experiments,

and contrary to the predictions of models that successfully capture the results of those

experiments, when other factors are controlled, Type II is not easier than Types III, IV,

and V, but harder, as predicted by GMECCS. GMECCS has only one free parameter, the

learning rate g (in our simulations, always 0.01). Within broad limits, changing g
changes only the time scale, and it is equivalent to multiplying the trial numbers by a

constant factor. To find the best GMECCS fit to the human data, we found it convenient

to leave g as it was and instead find the trial number that minimized the disparity

between human and GMECCS performance. Human performance was taken to be the cell

means in the fitted logistic-regression model of Table 6, where Type II was represented

only by the basic Type II subcell.

As noted in Section 5.1.1, GMECCS, like RULEX, the Rational Rules Model, the

Configural Cue Model, and all of the human learning and categorization models consid-

ered in this paper, treats stimuli as unstructured sets of feature values. They do not

address aspects of human learning behavior for which that assumption is invalid, such as

perceptual integrality between stimulus dimensions (which is known to affect the relative

difficulty of Types II and IV; Nosofsky & Palmeri, 1996). The Both Same Segment and
Both Same Genus factors were therefore designed into the experiment in order to check

the validity of this assumption for human learners in this experimental situation, and to

Table 6

Summary of fixed effects for the mixed-logit model for Experiment 1 (4,608 responses from 144 participants;

log-likelihood = �2,879)

Coefficient Estimate SE z Pr(>|z|)

(Intercept) 0.12803 0.14337 0.893 0.371865

I 0.81999 0.17583 4.663 <0.0001
III 0.47202 0.17322 2.725 0.006432

IV 0.63399 0.17423 3.639 0.000274

V 0.38984 0.17265 2.258 0.023952

VI �0.06134 0.17119 �0.358 0.720114

Both Same Genus 0.11078 0.24329 0.455 0.648850

Both Same Segment 0.69318 0.25149 2.756 0.005845

CorrFirst 0.27396 0.06348 4.316 <0.0001
Redup �0.77231 0.10142 �7.615 <0.0001

Notes. The reference category (i.e., the one described by the intercept) is Type II patterns where the two fea-

tures are in different segments and belong to different genera. Other levels of Type were dummy-coded;for

example, for a participant in the Type VI condition, the variables I, III, IV, and V were all 0, and VI was 1.

A Type II pattern for which Both Same Genus = 1 relates two instances of the same feature genus: for exam-

ple, two height features, two voicing features, etc. A Type II pattern for which Both Same Segment = 1 is

one in which both features occur in the same segmental position of the stimulus word.
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enable the statistical model to model out the effects of factors not accounted for in the

learning models. If, for example, perceptual integrality reduces performance on Type II

(Nosofsky & Palmeri, 1996), we should see the greatest reduction for the least-separable

features, which we expect to be features which occur simultaneously (features in the same

segment) or which are most similar to each other (features of the same genus, for

example, the voicing feature in two different consonants in the same stimulus). The very

high performance in the single-segment Type II condition is consistent with our predic-

tion (in Section 5.1.1) that human participants might solve a single-segment Type II prob-

lem as a segmental rather than featural pattern, and is contrary to Nosofsky and Palmeri’s

(1996) finding that perceptual integrality reduces Type II performance.

By using the modeled cell means rather than the raw ones, we removed the effects of

the nuisance variables (which GMECCS is not designed to account for). Disparity at a

given trial was taken to be the squared difference between these cell means and the

GMECCS proportion correct at that trial. The best match (disparity <0.0032) was attained
on Trial 9 of the GMECCS simulation, as shown in Fig. 10. (To make GMECCS attain

the same performance after 128 trials, like the humans, g would be set to

0.01 9 9/128 = 0.00070). The relative numerical order, I > IV > III > V > II > VI, was
in agreement with the GMECCS predictions (Section 5.2). Performance on Type II was
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Fig. 10. Human performance in Experiment 1 most closely matches Gradual Maximum Entropy with a Con-

junctive Constraint Schema (GMECCS) predictions at Trial 9. (The Type II mean excludes the same-segment

and same-feature-genus cases.) Chance performance is 0.5. Standard deviation for each curve at every time

point shown is less than 0.015 for Types I–V, and less than 0.026 for Type VI. Standard error of the mean is

standard deviation divided by
ffiffiffiffiffiffiffiffi
250

p
. See text for training parameters. The plotting symbols show perfor-

mance at Trial 9, and also label the curves (V and II are above and below their respective curves because

human performance was, respectively, above and below the predictions of GMECCS).
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lower than the GMECCS fit (by a margin of 0.046), and on Type V higher (by 0.030),

but the other four Type conditions were matched very closely (within 0.012). A logistic-

regression model with the following coefficients would fit the Trial 9 GMECCS results

perfectly: (Intercept) = 0.310, I = 0.644, III = 0.310, IV = 0.395, V = 0.083,

VI = �0.277. Each of these values falls well inside the 95% confidence interval around

the corresponding coefficient estimates from human performance in Table 6.

At this early stage, edge constraints still dominate the behavior of GMECCS (see pre-

vious discussion in Section 4.1). The probability that GMECCS will choose a positive

stimulus xþ over a negative stimulus x� increases with the number of positive edge

neighbors of xþ and the number of negative edge neighbors of x� (see Section 4.1

above). Fig. 11 shows two-alternative forced-choice performance by humans and by

GMECCS on Trial 9 as a function of supporting edge constraints. The highest perfor-

mance in both cases was attained when there were six supporting edge constraints; this

occurred on Type IV trials pitting the central positive stimulus against the central nega-

tive one. The lowest performance in both occurred when neither stimulus had an edge

neighbor, that is, all Type VI trials and the Type V trials that compared two isolated cor-

ners. Between these extremes, performance increases along with edge support for both

humans and GMECCS (when edge support is added to the logistic-regression model

above, it is highly significant; estimate = 0.360, SE = 0.048, z = 7.421, p\ :00001).
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Fig. 11. Effect of edge constraints in human learners (left panel) and in Gradual Maximum Entropy with a

Conjunctive Constraint Schema (right panel) on Trial 9 for Experiment 1. Horizontal axis: number of positive

edge neighbors of positive stimulus plus number of negative edge neighbors of negative stimulus. Vertical

axis: Probability of choosing positive stimulus (cell means for actual or simulated data). Plotting symbols have

been horizontally dithered for legibility. IIss = Type II with both features in the same segment (humans only).
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5.4. Discussion

Where the predictions of GMECCS differed from the classic SHJ order, participants in

Experiment 1 followed the GMECCS predictions. The resemblance to GMECCS

extended below the level of the SHJ Types when they were broken down further by the

edge neighborhoods of the individual stimuli. The results are thus consistent with

GMECCS in a detailed way and support the use of cue-based concept learning and con-

straint-based phonological models more generally. We now turn to the question of

whether they are also consistent with rule-based models, recalling that by “rule-based,” we

mean a model whose inductive bias respecting a hypothesis is most transparently expressed

in terms of the syntactic complexity of the model’s representation of that hypothesis

(see Section 1.2). Can the results of Experiment 1 be understood as the result of a prefer-

ence for syntactically simple hypotheses? The answer will depend on the model’s syntax

as well as on the humans’ data.

One family of proposals consists of those that relate the difficulty of learning a

concept to the number of features that are relevant to classifying a stimulus, but which

are not specified so as to generate learning curves. These proposals make different predic-

tions about the order of difficulty of the SHJ patterns. One proposal is that each hypothe-

sis is represented as a Boolean disjunction of conjunctions of individual feature

predicates, that hypotheses are penalized as these conjunctions become more numerous or

use more features, and that concept-learning performance depends on the least-penalized

hypothesis that correctly describes the pattern (Feldman, 2000, 2006). However, since

Types II and III can each be expressed as a disjunction of two two-feature conjunctions,

the penalty function, no matter how it is parametrized, does not distinguish between them

(Lafond et al., 2007), and thus leaves unexplained both the classic SHJ order (II > III)
and that found in Experiment 1 (III > II). Goodwin and Johnson-Laird (2011, 2013) pro-

pose that concepts are represented as sets of instances (either all positive, or else all nega-

tive) which have been simplified by deleting redundant features and collapsing together

the instances that were rendered identical by the loss of the redundant features. Learning

difficulty is proposed to increase along with the number of features in the resulting dis-

junction of conjunctions. Like Feldman’s Boolean-disjunction hypothesis, the mental-

model hypothesis does not distinguish Types II and III, and it also predicts both of them

to be easier than Type IV. These predictions do not explain the outcome of Experiment

1. Feldman (2006) proposes that learning difficulty increases along with a weighted aver-

age of the orders of the implicational relationships between features (where the order of

an implication is the number of features in the antecedent). This measure does not distin-

guish between Types II, III, and IV (Feldman, 2006, Fig. 10a), and so by itself predicts

neither the classical SHJ order nor the results of Experiment 1.

Vigo (2009) proposes instead to predict the difficulty of a pattern by an increasing

function of the sensitivity of category membership to changes in the values of stimulus

features. The proposal is shown to lead to the predicted difficulty order I > II > III,
IV > V > VI, which mismatches the order III, IV, V > II found in Experiment 1. Mathy

and Bradmetz (2004) and Bradmetz and Mathy (2008) propose that classification
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responses are generated by decision trees which describe the behavior of interacting

agents, each of which is responsible for making decisions based on a single feature. The

difficulty of learning a concept is proposed to increase along with the average number of

single-feature decisions that have to be made in order to classify a stimulus.12 Three dif-

ferent protocols for ordering the sequence of decision are studied. The Parallel protocol

does not distinguish Type II from Type III, and so it fits neither the original SHJ order

nor that of Experiment 1. The Random protocol does not distinguish Type II from Type

V, contrary to both the original SHJ results (in which Type II was easier than Type V)

and the results of Experiment 1 (in which Type II was harder than Type V). The Serial

protocol does not distinguish Types III–V from each other, but predicts all three to be

harder than Type II, as in the original SHJ order but not in Experiment 1.13

All of these proposals make the difficulty of learning a pattern a monotonically non-

decreasing function of the minimum number of features required to accurately specify the

pattern. They therefore predict that Types III–V should be at least as difficult as Type II,

in accordance with the original SHJ results, but contrary to the results of Experiment 1.

However, they assess pattern difficulty based on the correct description of the pattern,

that is, the learning target. What if learners’ responses are based on an imperfect approxi-

mation characteristic of an intermediate stage of learning? That possibility is addressed

by models which specify a learning algorithm and thus generate learning curves.

RULEX (Nosofsky et al., 1994) is a learning model which tests rule hypotheses in

increasing order of the number of stimulus features involved, trying first one- and then

two-dimensional rules until a tolerably accurate one has been found, or until all possibili-

ties have been exhausted, after which it begins memorizing stimuli whose classification is

not predicted by rule. (In Experiment 1, memorized training stimuli would not have

occurred in the test phase, since the test phase used only novel stimuli.) A perfectly accu-

rate two-dimensional rule exists for Type II, but for Types III–V; the best that can be

done is a one-dimensional rule that is 75% accurate. If the model has a low tolerance for

inaccurate rules, then Type II will be learned faster than Types III–V, as in Nosofsky

et al.’s simulation of their SHJ replication. In that case, RULEX does not predict the out-

come of Experiment 1. However, we can imagine a scenario in which the model is con-

tent with only partial accuracy. Now the shoe is on the other foot, because there is no

one-dimensional rule for Type II that is more than 50% accurate. We might therefore

observe the learner at a stage where it has found a partially accurate rule for Types

III–V, but is still testing and discarding candidate rules for Type II that are no better than

chance. Could that account for the III, IV, V > II ordering in Experiment 1?

To test the possibility that participants were actually using only one-dimensional rules,

we did the following. For each SHJ Type condition, the population of participants in that

condition was modeled as a mixture of one-dimensional rule users, with a proportion pk
using the k-th of the six possible one-dimensional rules. For each Type condition, there

were therefore five free parameters (p1 through p5, with p6 being 1 minus their sum). The

model was fit to the data using the same criterion that was used above to fit GMECCS

(Section 5.3), that is, minimizing the RMS disparity between the predicted and actual

proportion correct for the six types. The minimization was done using the Nelder–Mead
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algorithm as implemented in the constrOptim function in the stats package of R (R Core

Team, 2015). Even though the rule-mixture model has 30 free parameters where

GMECCS has only one, the RMS disparity of the best fit was 0.0839, more than 26 times

the disparity of the GMECCS fit (found to be <0.0032 in Section 5.3). When the SHJ

Types are disaggregated into subclasses based on the number of in- and out-of-concept

edge neighbors, the human and GMECCS results match closely, as seen in Fig. 11, but

Fig. 12 shows that the rule-mixture model is visibly less accurate. A one-feature rule that

correctly classifies central stimuli (e.g., the adjacent stimuli in Type V) has to misclassify

peripheral stimuli (e.g., the isolated stimuli in Type V), so in order to achieve a given

overall proportion correct, the rule-mixture model must overestimate performance at the

top of the neighborhood range and underestimate it at the bottom, as seen in Fig. 12.

Hence, participants must have been basing their decisions on more than a single feature.

In the Rational Rules model (Goodman et al., 2008), the hypothesis space is defined

by a grammar of logical formulas. The formulas are assigned prior probabilities on the

basis of their syntactic structure, and learning yields a posterior distribution over the

whole space. Since Rational Rules monitors a large number of hypotheses simultane-

ously, but also applies a syntactic prior to them, it falls into neither the “rule-based”

nor the “cue-based” group, but occupies a middle ground. Nonetheless, the results of

Experiment 1 are informative about it. The Rational Rules model is similar to RULEX
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Fig. 12. Predictions of best-fitting rule-mixture model for effects of edge neighborhood in Experiment 1.

Horizontal axis: number of positive edge neighbors of positive stimulus plus number of negative edge neigh-

bors of negative stimulus. Vertical axis: Probability of choosing positive stimulus (cell means for actual or

simulated data). Plotting symbols have been horizontally dithered for legibility. Compare Fig. 11.
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in that the order of Type II versus Types III–V can be manipulated by adjusting a

parameter that controls tolerance for rule inaccuracy. Goodman et al. report that pre-

dicted Type II performance falls below that for Types III–V when this parameter, b, is
reduced to 1. However, the interpretation of this parameter is that the model expects

each training datum to be falsely labeled with probability e�b; hence, the reversal is

observed only when the model expects 36.7% or more of the training data to be incor-

rect. This strikes us as unlikely (though not impossible) for human participants in these

experiments, or in the ones reported by Kurtz et al. (2013), which used a three-feature

stimulus space.

These conclusions must be taken with caution, because none of these alternative mod-

els has been studied with respect to unsupervised learning, and in no case has their

behavior on SHJ patterns been studied for generalization to exemplars outside the training

set. However, the principle underlying the models—that inductive bias favors hypotheses

that involve fewer features—is not borne out by the results of Experiment 1. In contrast,

GMECCS correctly captures both the observed difficulty order of the SHJ Types, and the

Type-internal differences between central and peripheral stimuli.

6. Experiment 2: Visual analogs

The results of Experiment 1 diverge from the findings of Shepard et al. (1961) in that

Type II proved harder, not easier, than Types III, IV, and V. The starkness of the differ-

ence appears to invite the inference that phonotactic patterns are learned using different

cognitive resources from non-phonological patterns. Phonotactic learning in particular

seems to involve a cue-based process like that described in Section 3, rather than the

rule-based processes that would produce the Type II advantage characteristic of the clas-

sical experiments.

However, the situation is not that simple. Because Experiment 1 was designed to

resemble typical phonotactic-learning experiments (which in turn are designed to resem-

ble natural language learning), it differed from the SHJ experiments in several ways

besides just being phonological. Some of those differences are known to affect relative

pattern difficulty, especially of Types II and IV, in non-linguistic learning. Experiment 2

asks whether a non-linguistic analog of Experiment 1 would in fact replicate the classical

difficulty order. (We note that phonological and non-linguistic patterns have been com-

pared by earlier researchers, for example, Finley & Badecker, 2010; Lai, 2012; Smith &

Minda, 1998; Weinert, 2009.) If the classical order is replicated, that would corroborate

the hypothesis that it is phonological learning, in particular, which is served by a cue-

based learner of the sort described in Section 3. But if the relative difficulty of the non-

linguistic analogs is similar to that of the corresponding phonotactic patterns, that would

be consistent with the hypothesis that, when task conditions are controlled, learning takes

place in the same way in both domains.

We are concerned in particular with four differences between the classical experiments,

on the one hand (Nosofsky et al., 1994; Shepard et al., 1961; Smith et al., 2004), and
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Experiment 1, on the other, which could in principle account for the difference in relative

difficulty. First, the classical experiments used supervised training; that is, participants

were exposed to both conforming and nonconforming instances, and were told which

were which, whereas Experiment 1, like other phonotactic experiments, used unsuper-

vised training. Second, participants in the classical experiments were instructed to search

for a pattern or rule; those in Experiment 1 and other phonotactic experiments were not.

Both supervised training and explicit rule-seeking are known to facilitate Type II relative

to Type IV in non-linguistic learning (Kurtz et al., 2013; Love, 2002; Love & Markman,

2003). Experiment 2 therefore uses unsupervised training and no rule-seeking

instructions.

Thirdly, where previous experiments used a three-dimensional stimulus space, Exper-

iment 1 used eight dimensions, of which at most three were relevant to the pattern

and the rest were irrelevant. Adding irrelevant visual dimensions can hurt performance

on Type II, and even more on Type VI, relative to Type I (Kepros & Bourne, 1966),

but we have no information on how irrelevant dimensions affect the relation between

Type II and Types III, IV, and V in human learning (for effects in GMECCS, see

Footnote 8, above). The effects of irrelevant dimensions may thus reinforce or counter-

act those of supervised training and explicit rule-seeking. To match this aspect of

Experiment 1, Experiment 2 uses an eight-feature visual stimulus space analogous to

that of Experiment 1.

Fourthly, the features in Experiment 1, unlike those in the classic experiments, were

not entirely orthogonal: Some pairs of features were more closely linked than others

owing to the prosodic and featural structure of pseudo-word stimuli. For instance, the

height of the first vowel has a structural relationship to the height of the second vowel,

or to the backness of the first vowel, which it does not have to the backness of the second

vowel or the voicing of the second consonant. These factors are known to affect the rela-

tive difficulty of visual Types II and IV (Love & Markman, 2003). The stimuli in Experi-

ment 2 are therefore designed to have internal structure that is analogous to segments,

syllables, and autosegmental feature tiers.

6.1. Method

6.1.1. Participants
Volunteers were recruited from the same population as in Experiment 1, at the same

rate of pay. Again, there were 24 participants in each Type condition, for a total of 144.

Another 15 people took part, but their data could not be used (1 had non-native English,

3 failed to meet the 12-out-of-32 accuracy criterion, and 10 were lost to equipment or

software failure).

6.1.2. Stimuli
The objective of stimulus design for this experiment was to create a stimulus space

with the following properties, which are meant to make Experiment 2 analogous to

Experiment 1. (a) Each word stimulus from Experiment 1 should have a unique visual
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analog in Experiment 2. (b) The internal prosodic structure of the words should be

reflected in the analogs. In particular, there should be an analog of the segment, grouping

two features together, and an analog of the syllable, grouping two segment analogs

together. (c) The featural tier structure of the words should be reflected in the analogs:

Each type of feature should occur twice, once in each syllable analog. Each type of fea-

ture should occur exclusively in the consonant analogs or in the vowel analogs. Properties

(b) and (c) introduce non-orthogonality between visual features that is analogous to a

non-orthogonality between phonological features in Experiment 1. (d) The objects should

be relatively “natural” in the sense of being of a recognizable and familiar sort (the same

way that nonsense words are a recognizable and familiar thing).

Stimuli were fancy cakes. The cakes were organized into two layers (the highest level

of grouping, analogous to syllables), and within the layers, into the body of the layer and

the stuck-on decorations (analogous to vowels and consonants, respectively). Table 7

shows the analogy. Some examples of words and their analogous cakes are shown in

Fig. 13. As in Experiment 1, each participant was trained on a different instantiation of

the SHJ pattern type appropriate for his or her condition.

6.1.3. Procedure
The procedure was modified minimally from that of Experiment 1; only the differences

will be described here. Participants were told that they would be learning to recognize “a

particular style of fancy cake.” They would first study cakes made in this style, and then

they would be “tested on how well you can recognize them.” In the familiarization phase,

each participant viewed 32 pattern-conforming cakes, one at a time, in random order four

Table 7

Correspondence between cake and word features

Feature

Stimulus Segment

r1 r2

C1 V1 C2 V2

voiced � �
Coronal � �
high � �
back � �

Feature

Nonlinguistic Analogues

Layer 1 (Bottom) Layer 2 (Top)

Candy 1 Body 1 Candy 2 Body 2

Diamond candy � �
Blue candy � �
White icing � �
Brown batter � �
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times. They could view each cake for as long as they liked before proceeding to the next

cake. Cakes were separated by a 250-ms visual mask and 250-ms blank image (Fig. 14).

The test phase consisted of 32 two-alternative forced-choice trials, each with one pat-

tern-conforming cake and one non-conforming cake. All images were 7 cm wide by

5.5 cm high and were displayed on a screen at a self-selected distance (about 45 cm)

from the participant’s eye. Each trial began with a 1000-ms fixation point, followed by a

250-ms blank screen. One of the cakes was then exposed for 2,000 ms. A 250-ms visual

mask and 250-ms blank image followed, and then the other cake was presented for

2,000 ms, followed again by a 250-ms visual mask. The display region then remained

blank until the participant had responded (by clicking “1” or “2” on buttons displayed

below it). The next trial began as soon as the participant had responded, but not less than

250 ms after the disappearance of the visual mask at the end of the current trial.

6.2. Results and discussion

Individual participant means are shown in Table 8 and in Fig. 15. The same analysis

procedure was followed as for Experiment 1. The fixed-effects parameters of the fitted

model are shown in Table 9. Performance in the reference group (Type II with the two

critical features belonging to different types and different layers) did not differ signifi-

cantly from chance. Familiarization on Type III significantly increased the odds of a pat-

Fig. 13. Examples of corresponding cakes and words.

Fig. 14. Sequence of events for the familiarization phase of Experiment 2.
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tern-conforming response by a factor of 1.61 (¼ e0:47634). Pattern-conforming responses

were also more likely in the Type IV and Type V conditions, but the differences did not

reach significance. As far as the relative difficulty of Type II compared to Types III, IV,

and IV goes, participants in this experiment performed more like those in Experiment 1

than like those in the classic SHJ experiments: There was no evidence that Type II was

easier than Types III, IV, and V, and in fact there was positive evidence that Type II was

harder than Type III. These results are consistent with the use of a cue-based learning

procedure of the sort described in Section 3 and inconsistent with that of a rule-based

one.

Table 8

Mean proportion correct in each Type condition of Experiment 2, with standard deviations, cell sizes, and

standard errors

Type I II II II III IV V VI

Plotting Symbol ▵ +

Mean 0.845 0.503 0.979 0.552 0.613 0.585 0.557 0.489

SD 0.160 0.067 0.026 0.065 0.130 0.126 0.125 0.075

N 24 12 6 6 24 24 24 24

SEM 0.032 0.019 0.011 0.027 0.027 0.026 0.026 0.015

Notes. Plotting symbols for Type II: + = all relevant features are in the same segment analog; ▵ = all rele-

vant features are of the same type (agreement/disagreement pattern); = other.
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Fig. 15. Individual participant performance (proportion pattern-conforming responses) for Experiment 2.

Plotting symbols for Type II: + = all relevant features are in the same segment analog (Type II-ss); ▵ = all

relevant features are of the same type (agreement/disagreement pattern, Type II-sg); ∘ = other.
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However, the results also differed in some ways from those of Experiment 1. Seven of

the 24 Type I participants chose the pattern-conforming response on all 32 of the test tri-

als, and fully half of the participants chose it on at least 30 of them. In fact, Type I per-

formance was very significantly better than that in all other Type conditions as well, as

shown by the fact that the Type I model coefficient was four standard errors above the

next-highest coefficient (that of Type III). Near-perfect Type I performance, with simulta-

neous poorer performance on higher types, is characteristic of rule-based rather than

cue-based learners, arising when learners in the Type I condition find the correct single-

feature rule quickly while those in the other conditions are still searching (Shepard et al.,

1961; Smith et al., 2004). The theoretical reason is that Type I patterns are solved by sin-

gle-feature rules, which, being less syntactically complex than any other kind of rule,14

are found more quickly, and, once found, enable perfect performance. It has been found

empirically that task conditions which favor rule learning, such as explicit instructions to

seek a rule, lead to a bimodal distribution of participant performance, with “solvers” near

100% accuracy and “nonsolvers” near 50% (Kurtz et al., 2013).

An alternative cue-based account might be possible, but it would have to be specially

engineered for the task. One approach to privileging Type I over the others would be to

inhibit the two- and three-feature constraints in GMECCS or another model. However,

some explanation would then be required for the empirical finding, in Fig. 16, that the

preference between the two central stimuli in Type IV—which is supported by six par-

tially valid one-feature (face) constraints—is so much weaker than the preference in Type

Table 9

Summary of the fixed effects in the mixed logit model for Experiment 2 (N = 4,586 observations, log-likeli-

hood = �2,798)

Coefficient Estimate SE z Pr(>|z|)

(Intercept) �0.17464 0.17077 �1.023 0.3064

I 1.85092 0.21958 8.429 <0.0001
III 0.48634 0.20646 2.356 0.0185

IV 0.35657 0.20607 1.730 0.0836

V 0.24300 0.20586 1.180 0.2378

VI �0.05394 0.20544 �0.263 0.7929

Both Same Genus 3.94839 0.58225 6.781 <0.0001
Both Same Segment 0.21881 0.29093 0.752 0.4520

Redup �0.23880 0.09933 �2.404 0.0162

CorrFirst 0.35885 0.06437 5.574 <0.0001

Notes. The reference category (i.e., the one described by the intercept) is Type II patterns where the two fea-

tures are in different segments and belong to different genera. Other levels of Type were dummy-coded; for

example, for a participant in the Type VI condition, the variables I, III, IV, and V were all 0, and VI was 1.

A Type II pattern for which Both Same Genus = 1 relates two instances of the same feature genus, for exam-

ple, two icing-color features, two candy-shape features, etc. A Type II pattern for which Both Same Seg-
ment = 1 is one in which the two features are either (a) the shape and color of the candy on a single layer,

or (b) the batter and icing of the cake itself on a single layer (these are analogous to segment positions in

verbal stimuli, as shown in Table 7).
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I, which is supported by two fully-valid one-feature constraints, and why it is little better

than the preference for positive over negative stimuli in Type II, which is supported by

no one-feature constraints at all.

Finally, there were differences related to the internal structure of the stimuli. In Experi-

ment 1, performance on Type II patterns improved significantly when both relevant fea-

tures were in the same consonant or same vowel, but Type II performance was not

significantly affected when both relevant features were of the same genus. The reverse

was true for Experiment 2: Type II performance was not affected by whether the two rel-

evant features were in the same consonant or vowel analog, but improved significantly

when both belonged to the same genus (e.g., “same icing on both layers,” “different bat-

ter above and below,” etc.).

Both of these differences (the same-genus effect and the very good performance on

Type I) may be due to facilitation of deliberate, conscious, explicit rule extraction by the

higher verbalizability of the cake features compared to the phonological features. That is,

subjects could have used rules to solve those types in the experiment that afforded com-

pact verbal predicates, like “top layer is chocolate” (Type I) or “different icing on the

two layers” (same-genus Type II). A study by Ciborowski and Cole (1973) found that
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Fig. 16. Test performance (log-odds of probability of a pattern-conforming response) in Experiment 2 as a

function of the number of edge constraints supporting the pattern-conforming stimulus over the non-conform-

ing one. (Plotting symbols for subtypes of Type II: IIss = both relevant features are in same segment analog;

IIsg = both relevant features are of same type (agreement/disagreement); IIno = plain Type II; II = average

for all Type II subtypes.) p. 41, l. 11: Put spaces around “AND” and “OR”, so that they don’t touch the “X”

and “Y”.
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intra-dimensional dependencies can be stated in fewer words than inter-dimensional ones

(e.g., “red and red” can be shortened to “both red,” whereas “red and triangle” cannot

be), and that learning was better for intra-dimensional patterns when the short form was

reported. Learning of conjunctive concepts has been observed to be faster when partici-

pants are asked to verbalize their hypotheses (King & Holt, 1970), and the harder the

stimulus dimensions are to verbalize, the smaller the difference between Type I and other

pattern types (Kurtz et al., 2013; Lewandowsky, Newell, Xieng Yang, & Kalish, 2012).

Other pattern types, which did not afford verbally simple rules, may have been solved

using a cue-based procedure.15

Previous research found that na€ıve participants in inductive category learning experi-

ments can verbalize rule hypotheses explicitly, either trial by trial (Bruner, Goodnow, &

Austin, 1956; Conant & Trabasso, 1964; Peters & Denny, 1971) or in post-experiment

debriefing (Gottwald, 1971; Shepard et al., 1961; Smith, Tracy, & Murray, 1993). For

example, participants trained inductively on two different logical rule schemas (e.g.,

XANDY vs. XORY) can identify which schema correctly classifies a new set of stimuli with

different features (Haygood & Bourne, 1965; King, 1966), and participants trained induc-

tively on a rule-described pattern show positive transfer to inductive learning on a new

stimulus set where the same rule is instantiated by different features (Bourne &

O’Banion, 1971; Haygood & Bourne, 1965; Shepard et al., 1961). The verbal complexity

of participants’ rules can be correlated with the difficulty of the classification problem

(Ciborowski & Cole, 1973; Shepard et al., 1961) (although the solution rate can exceed

the correct verbalization rate; Ciborowski & Cole, 1971). It is therefore reasonable to

expect easily verbalizable stimuli to facilitate rule extraction (Kurtz et al., 2013).

In the phonological experiment, explicit rule-based learning was not available for any

of the patterns because phonological features are hard for untrained participants to ver-

balize. Additionally, extraction of rules (whether explicit or implicit) may also be inhib-

ited by perceptual integrality between stimulus dimensions, which prevents selective

attention to individual features. Evidence for this comes from a study by Nosofsky and

Palmeri (1996), who replicated the SHJ experiment using features defined on integral

dimensions (hue, brightness, and saturation). They found that Type II was now the sec-

ond-most-difficult condition after Type VI. Note that although there is some evidence for

integrality in the phonological features, at least in the sense that irrelevant variation in

one segmental position can delay classification responses to another position (Kapatsin-

ski, 2011), it is unlikely that this is responsible for the difficulty of Type II in Experi-

ment 1. If that were the source of the Type II difficulty, removing the integrality ought

to improve relative performance on Type II. However, although the cake features are

almost paradigmatically separable, being distinct in shape, color, and location, Type II is

as difficult as ever.

To sum up this discussion, had Experiment 2 yielded SHJ-like results, the difference

from the results of Experiment 1 would have strengthened the hypothesis that phonotactic

patterns are learned using different cognitive processes from analogous visual patterns.

The actual results are in fact consistent with a cue-based learning process being available

in both domains. This is confirmed when we examine the effect of edge constraints on
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two-alternative forced-choice responses, shown in Fig. 16. Except for Type I and the

same-feature-type subtype of Type II, performance depends on how many edge

constraints favor the pattern-conforming stimulus (compare Fig. 11). The results of

Experiments 1 and 2 together therefore support the hypothesis that both a rule-based sys-

tem and a cue-based system might be used by the learner depending on the nature of the

stimuli and task conditions (Ashby et al., 1998; Love, 2002; Maddox & Ashby, 2004;

Smith et al., 2012), and that at least cue-based learning can be applied to both phonotac-

tic and visual patterns.

7. Experiment 3: Learning with feedback

Experiment 1 showed that the behavior of participants in a standard phonotactic-learn-

ing experiment is well modeled by the cue-based learner GMECCS. Experiment 2

showed that a visual analog evokes cue-based learning in some conditions, but rule-based

learning in others, thereby confirming that the cue-based performance in Experiment 1

depends at least in part on the content of the stimuli and is not an inevitable consequence

of the experimental paradigm (unsupervised familiarize-and-test learning with multiple

irrelevant features). Two main possibilities remain. One is that all phonotactic learning

takes place via cue-based processes; that is, there really is only a single learning process

for acquiring phonotactic patterns. Alternatively, it may be that rule-based learning is also

possible for phonology, given the right circumstances (which Experiment 1 did not pro-

vide). Experiment 3 is designed to address these possibilities.

One factor that may facilitate rule-based learning relative to cue-based learning is

supervised training (Love, 2002; Maddox & Ashby, 2004), that is, a regime in which the

participant explicitly sorts stimuli into categories and receives right/wrong feedback. This

paradigm has also been used in studies of phonological learning, though it is less com-

mon than unsupervised training (Coberly & Healy, 1984; LaRiviere et al., 1974, 1977;

Pycha et al., 2003; Pycha, Shin, & Shosted, 2007; Schane, Tranel, & Lane, 1974). Exper-

iment 3 is designed along similar lines. Participants are exposed to both “words” and

“non-words” of the language, and they learn by trial and error which are which. They are

then tested using the same kind of test phase as in Experiment 1. If supervised training

facilitates rule-based learning relative to cue-based learning, Experiment 3 should show

improvements, compared to Experiment 1, in Types II and I relative to Type IV.

7.1. Method

Participants in Experiment 1 received 128 familiarization trials in which 32 different

pattern-conforming words were presented four times each. In Experiment 3, the partici-

pants likewise received 128 familiarization trials in which 32 different words were pre-

sented four times each, but in this experiment, 16 of the words were pattern-conforming

and 16 were non-conforming.
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7.1.1. Participants
To focus on the II versus IV comparison, Types III, V, and VI were omitted entirely.

There were 6 participants in each sub-type of Types I, II, and IV defined by having (vs. lack-
ing) two critical features in the same segment and having (vs. lacking) two critical features

of the same genus (for a total of 32 participants). (As in Experiments 1 and 2, preliminary

analysis showed that performance on the sub-types differed only within Type II, so they

were collapsed together for Type IV.) The participants were 48 paid volunteers recruited

from the UNC university community. They were self-screened for normal hearing and native

English. Data from three more participants were replaced because of equipment failure.

7.1.2. Stimuli
The stimuli were identical to those used in Experiment 1. As in Experiments 1 and 2,

each participant received a different, randomly generated instantiation of the SHJ pattern

that was appropriate to his or her condition.

7.1.3. Procedure
The equipment and testing environment were as in Experiments 1 and 2. As in Experi-

ment 1, the participants were told that they would be learning to recognize words in an

artificial language, and would be tested later on how well they could recognize them. On

each trial of the study phase, the participant heard a stimulus word and repeated it aloud,

then mouse-clicked one of two on-screen buttons marked “Yes” or “No.” Feedback for a

correct answer was a bell sound; for an incorrect one, a buzzer. Instructions and proce-

dure for the test phase were identical to those used in Experiment 1. No feedback was

given during the test phase.

7.2. Results and discussion

This experiment is an attempt to elicit symptoms of rule-based learning in phonotactics

by changing the experimental procedure from Experiment 1 in a way which has been

observed to enhance rule-based learning in other domains. Experiment 3 could in princi-

ple find clear evidence of rule-based learning or could fail to find that evidence. Success

in finding that evidence would mean that, under the right circumstances, humans are cap-

able of rule-based phonotactic learning. Failure to find evidence of rule-based learning in

Experiment 3 would not, of course, mean that no possible experiment would ever find

such evidence; rather, it would enlarge the set of circumstances under which rule-based

learning has been observed not to happen. We analyzed the results of both the test and

training phases to maximize the opportunity to observe symptoms of rule-based learning.

7.2.1. Test phase
Results from the test phase are shown in Table 10 and Fig. 17. One symptom of rule-

based learning—the perfect or near-perfect Type I performance that occurred so often in

Experiment 2—is conspicuously absent here. The mixed-effects logistic regression model

for the results is shown in Table 11. Performance in the basic Type II condition did not
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differ significantly from chance, nor from performance in the Type IV condition. Type I

performance was significantly above the Type II baseline. The only other significant

effect of a critical variable was that of Both Same Genus, indicating that those Type II

patterns which were based on agreement or disagreement between two instances of the

same feature (e.g., the voicing features in the two consonants) elicited more pattern-con-

forming test-phase responses. Thus, we failed to find one signature of rule-based learning,

better performance on Type II than on Type IV. The lack of difference in favor of Type

II was not due simply to a floor effect (caused by, for example, failure to provide enough

training data for either of the higher types to be learned at all), because Type IV perfor-

mance, although not significantly better than Type II performance, was significantly better

than chance performance (this can be seen in Table 10, where the Type IV mean is more

than two standard errors above the chance level of 0.5). Significant learning thus took

place in the Type I and IV conditions, but not in the basic Type II condition.

A second opportunity to observe effects of rule-based learning is the following: If

replacing unsupervised with supervised training facilitates rule-based learning of phono-

tactic patterns, then substituting supervised for unsupervised training might produce more

Table 10

Mean proportion correct in each Type condition of Experiment 3, with standard deviations, cell sizes, and

standard errors. Plotting symbols refer to Fig. 17

Type I II II II IV

Plotting Symbol ▵ +

Mean 0.688 0.479 0.651 0.578 0.570

SD 0.203 0.077 0.163 0.224 0.129

N 6 6 6 6 24

SEM 0.083 0.031 0.067 0.091 0.026

Table 11

Summary of the fixed effects in the mixed logit model for Experiment 3 (N = 1,536 observations, log-likeli-

hood = �1,002)

Coefficient Estimate SE z Pr(>|z|)

(Intercept) �0.1772 0.2780 �0.638 0.523791

I 0.9968 0.3938 2.531 0.011377

IV 0.3955 0.3053 1.295 0.195171

Both Same Genus 0.7853 0.3901 2.013 0.044085

Both Same Segment 0.4978 0.3896 1.278 0.201373

Redup �0.6272 0.1624 �3.863 0.000112

CorrFirst 0.1726 0.1072 1.610 0.107506

Notes. The reference category (i.e., the one described by the intercept) is Type II patterns where the two fea-

tures are in different segments and belong to different genera. Other levels of Type were dummy-coded; for

example, for a participant in the Type IV condition, the variable I was 0 and IV was 1. A Type II pattern for

which Both Same Genus = 1 relates two instances of the same feature genus, for example, two height fea-

tures, two voicing features, etc. A Type II pattern for which Both Same Segment = 1 is one in which both

features occur in the same segmental position of the stimulus word.
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improvement in performance on Type II patterns than in performance on Type IV

patterns. This prediction was tested statistically by fitting another mixed-effects logistic

regression model to the data from Experiment 3 and from the Type I, II, and IV condi-

tions of Experiment 1, with Experiment (unsupervised = 0, vs. supervised = 1) as a factor
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Fig. 17. Individual participant performance (proportion pattern-conforming responses) for Experiment 3.

Plotting symbols: + = all relevant features are in the same segment analog; ▵ = all relevant features are of

the same genus (agreement/disagreement pattern); = other.

Table 12

Summary of the fixed effects in the mixed logit model comparing Experiment 3 with Experiment 1

(N = 6,144 observations, log-likelihood = �3,912)

Coefficient Estimate SE z Pr(>|z|)

(Intercept) 0.329498 0.059838 5.506 <0.0001
I 0.681943 0.116145 5.871 <0.0001
IV 0.516977 0.114390 4.519 <0.0001
Both Same Segment 0.520218 0.215154 2.418 0.01561

Both Same Genus �0.073559 0.210144 �0.350 0.72631

Supervised �0.524418 0.182644 �2.871 0.00409

CorrFirst 0.244593 0.054265 4.507 <0.0001
Redup �0.721768 0.085395 �8.452 <0.0001
Supervised 9 I 0.315515 0.283824 1.112 0.26629

Supervised 9 IV �0.154627 0.230952 �0.670 0.50316

Supervised 9 Both Same Segment 0.004564 0.332755 0.014 0.98906

Supervised 9 Both Same Genus 0.768695 0.332198 2.314 0.02067

Notes. The reference category is the unsupervised basic Type II. Other levels of Type were dummy-coded;

for example, for a participant in the Type IV condition, the variable I was 0 and IV was 1. A Type II pattern

for which Both Same Genus = 1 relates two instances of the same feature genus, for example, two height fea-

tures, two voicing features, etc. A Type II pattern for which Both Same Segment = 1 is one in which both

features occur in the same segmental position of the stimulus word.
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(Table 12). The large and significantly negative main effect of Supervised indicates that

performance on the basic Type II pattern was lower, not higher, when supervised training

was used. The only other statistically significant difference between the supervised and

unsupervised experiments was that Type II agreement and disagreement patterns elicited

significantly better performance after supervised than after unsupervised training, as seen

in the significant positive effect of Supervised 9 Both Same Genus. The drop in Type II

performance after supervised training could be due to overall lower performance in Experi-

ment 3 (the lack of a significant interaction between Supervised and I or IV means that the

difference between the two experiments in Type I performance and in Type IV perfor-

mance could not be distinguished from the difference in Type II performance). Lower per-

formance in Experiment 3 than in Experiment 1 could in turn be due to a number of

factors. For example, the participants in Experiment 3 were trained on 16 positive and 16

negative stimuli, rather than the 32 positive and 0 negative stimuli of Experiments 1 and 2;

hence, they were provided with more information about the structure of the negative cate-

gory, but less about that of the positive category. Experiments with supervised non-linguis-

tic pattern learning have found that participants may focus on positive stimuli over

negative ones (Bruner et al., 1956, Ch. 6). If that focus takes the form of simply ignoring

the negative stimuli, then the participants in Experiment 3 may have been, in effect, trained

on just the 16 positive stimuli, which could account for the reduction in performance.

7.2.2. Training phase
The test-phase results do not support the hypothesis that supervised training facilitates

rule-based over cue-based learning of phonotactic patterns, since Type II performance

became significantly worse rather than better after supervised training. However, it is still

possible that a Type II advantage was present in the training phase but did not carry over

into the test phase (which required generalization outside of the training set).

To test this possibility, the 128 training trials were divided into four 32-trial blocks,

and average performance (proportion correct) was calculated for each block, as shown in

Fig. 18. The participants in the Type I condition learned faster and reached a higher level

of performance than the participants in the Type II and Type IV conditions. A logistic-re-

gression model was fitted to the data (Fig. 13). The fixed effects were the same as in the

analyses of Experiments 1 and 2 except for the addition of a Block variable (with Block

0 being Trials 1–32) and interactions with it. The CorrFirst variable was also dropped,

since it is only meaningful for two-alternative forced-choice trials. There was again a ran-

dom intercept for each participant.

Fig. 18 shows that essentially no learning took place in the basic Type II condition, an

observation which is borne out by the smallness and nonsignificance of Block in

Table 13. Learning in the Type IV condition was not significantly faster than that (the

Block 9 IV term was positive, but not significantly so). The significant Block 9 I inter-
action shows that learning was faster in the Type I condition than in the basic Type II

condition. Learning was significantly faster for Type II patterns when the two features

belonged to the same segment or same feature genus, as shown by the significant

interactions of Both Same Genus and Both Same Segment with Block. In the training
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Fig. 18. Aggregate learning curves (mean proportion correct responses) for the training phase of Experiment

3. Line types: Dash-dotted = Type I; solid = Type II; dotted = Type IV. Plotting symbols: + = all relevant

features are in the same segment; ▵ = all relevant features are of the same genus (agreement/disagreement

pattern); = other.

Table 13

Summary of fixed effects for the mixed-logit model for the training phase of Experiment 3 (6,148 responses

from 48 participants; log-likelihood = �4,087)

Coefficient Estimate SE z Pr(>|z|)

(Intercept) 0.11630 0.19808 0.587 0.5571

I �0.07080 0.28213 �0.251 0.8019

IV 0.06393 0.22147 0.289 0.7728

Both Same Segment 0.03580 0.28072 0.128 0.8985

Both Same Genus 0.15148 0.28258 0.536 0.5919

Block �0.03165 0.06476 �0.489 0.6251

Redup 0.15143 0.10839 1.397 0.1624

I 9 Block 0.38321 0.09605 3.990 <0.0001
IV 9 Block 0.11001 0.07265 1.514 0.1299

Both Same
Segment 9 Block

0.18510 0.09301 1.990 0.0466

Both Same
Genus 9 Block

0.21351 0.09459 2.257 0.0240

Notes. The reference category is the first 32-trial block in the basic Type II condition. Other levels of Type
were dummy-coded; for example, for a participant in the Type IV condition, the variable I was 0 and IV was

1. A Type II pattern for which Both Same Genus = 1 relates two instances of the same feature genus, for

example, two height features, two voicing features, etc. A Type II pattern for which Both Same Segment = 1

is one in which both features occur in the same segmental position of the stimulus word.
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phase, unlike in the test phase, participants showed no significant preference for, or aver-

sion to, “reduplicated” stimulus words like [gaga].

Thus, neither the training-phase nor the test-phase results provide any evidence that

supervised training facilitates the learning of Type II phonotactic patterns relative to Type

IV patterns. (This is not to say that rule-based phonotactic learning never happens; rather,

one attempt to elicit it by using a rule-facilitating experimental procedure failed to do

so.) We note that this is consistent with the predictions of GMECCS. GMECCS can be

trained in a supervised mode by simply adding the category label (positive or negative)

as a ninth feature. The classification task can be modeled as a choice between correctly

and incorrectly labeled versions of the same eight-bit stimulus.16 As Fig. 19 shows, the

predicted difficulty orders remain the same as in the unsupervised case (Fig. 8).

8. General discussion

The inductive problems faced by human learners in phonological and non-linguistic

pattern learning are so similar that it is surprising that they have not been the object of

comparative study from the outset. The empirical and theoretical results reported in the

present study confirm, we would argue, that these two kinds of learning are in fact

connected: Given analogous patterns in the sound structure of words and the physical
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Fig. 19. Predicted generalization performance (probability of correctly classifying a novel stimulus) for

eight-feature Gradual Maximum Entropy with a Conjunctive Constraint Schema under supervised training

(average of 250 replications per Type; learning rate g = 0.01). Standard deviation for each curve at every

time point shown is <0.015 for Types I–V, and <0.022 for Type VI. Standard error of the mean is standard

deviation divided by
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structure of everyday objects (cakes), human learners acquired and generalized them in

analogous ways, raising the possibility that they may have applied analogous—or even

identical—learning processes in the two domains. The comparative study of the two kinds

of learning proved informative about both. Here we discuss the implications for psycho-

logical theories of concept learning, for linguistic theories of phonology, and for the

relation between concept learning and phonological learning.

8.1. Implications for concept learning

Experiment 1 was designed as a typical phonotactic-learning experiment, and Experi-

ment 2 was designed as a non-linguistic analog of Experiment 1. Both experiments there-

fore differed in several ways from typical concept-learning experiments: Training was

unsupervised and used only positive stimuli; stimuli had multiple irrelevant features; test-

ing required generalization outside of the training set, and (in the case of Experiment 1),

the stimulus dimensions were phonological features.

Although the original SHJ performance order (I > II > III, IV, V > VI) has been repli-

cated many times with different stimulus sets and in different experimental situations,

Experiment 2 found significantly worse performance on Type II than on Type III (with

non-significant trends in that direction for Types IV and V as well), and Experiment 1

found significantly worse performance on Type II than on all of Types III, IV, and V.

Reductions or reversals of the classical Type II advantage have also been found when

stimulus dimensions are perceptually integral (Nosofsky & Palmeri, 1996) or hard to ver-

balize (Kurtz et al., 2013), when learning is incidental or unsupervised (Love, 2002), or

when rule-seeking instructions are not given (Kurtz et al., 2013). The inductive bias of a

human concept learner is thus not a fixed, stable thing, but is strongly affected by the

experimental task and the physical nature of the stimuli.

Moreover, difficulty within an SHJ Type is not fixed either. When stimuli within a

Type were disaggregated into subtypes based on their number of edge neighbors, stimuli

that were more central (positive stimuli with more positive edge neighbors, or negative

stimuli with more negative edge neighbors) were found to have elicited higher perfor-

mance than stimuli that were more peripheral, in both phonological and visual learning.

In fact, performance on central stimuli in a difficult type could exceed that on peripheral

stimuli in an easier type (see Fig. 11).

These results challenge existing models of both general and phonological concept learn-

ing. Predicting the difficulty order III, IV, V > II has in the past been grounds to reject a

concept-learning model (Gluck & Bower, 1988a; Medin & Schwanenugel, 1981), but now

that prediction is exactly what is needed to account for the results of Experiments 1 and 2.

We have discussed at length GMECCS, a cue-based learner which embeds the constraint

set of the (visual) Configural Cue Model (Gluck & Bower, 1988a) in a Maximum Entropy

phonotactic learning framework (Goldwater & Johnson, 2003; Hayes & Wilson, 2008;

J€ager, 2007). With only one free parameter, GMECCS can fit the observed I > III, IV,
V > II > VI order, and when so fit it makes correct predictions (without being previously

engineered to do so) about the effect of edge neighbors (Fig. 11). GMECCS improves on
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the Configural Cue Model empirically by correctly predicting that Type IV will not even-

tually fall behind Types II and III with long training, a thing that has never been observed

in human learners. GMECCS is also a theoretical improvement, in that the Maximum

Entropy framework is much more versatile than a simple perceptron: It learns probability

distributions rather than simple binary judgements and can be applied not only to phono-

tactics but to input–output relations (Goldwater & Johnson, 2003).

The results pose a particular difficulty for concept-learning models which prefer for

hypotheses to use fewer features, such as the Boolean complexity model (Feldman, 2000,

2006; Lafond et al., 2007), RULEX (Nosofsky et al., 1994), the Rational Rules model

(Goodman et al., 2008), and others (see discussion in Section 5.4). Although Experiment 2

found some evidence consistent with a featural-parsimony preference in some of the sim-

pler visual patterns, no such evidence was found for phonotactic patterns, even when

supervised training was used (Experiment 3).17 We saw also that the participants in Exper-

iment 1 are not well modeled as a mixed population of users of (possibly imperfect) sin-

gle-feature rules, because that model provides a much worse fit to the edge-neighbor effect

than does GMECCS, with many more degrees of freedom than GMECCS (Section 5.4).

Prototype models, which represent a category as an average across its exemplars, are

also challenged by these results. Since the decision bound in a prototype model is a

hyperplane perpendicular to the line that joins the two opposing prototypes, prototype

models have difficulty with categories that are not linearly separable in terms of the stim-

ulus dimensions (Medin & Schwanenflugel, 1981). The nonlinearly separable Type II is

thus correctly predicted to be more difficult than the linearly separable Type IV, but

Types III and V, which are not linearly separable, are incorrectly predicted to have diffi-

culty, which is similar to that of Type II, rather than that of Type IV.

Another major class of categorization models eliminates abstraction over training

instances and instead derives categorization behavior from similarity to stored exemplars.

(For a recent review of exemplar models in psychology, see Kruschke, 2008; in phonol-

ogy, Kirchner, Moore, & Chen, 2010.) Abstraction in GMECCS resides in the constraints,

whose weights represent the model’s confidence in the generalizations they express. Since

the constraint weights can be eliminated from the model (Appendix A), the only neces-

sary state variables in GMECCS are the estimated probabilities of the individual stimuli.

That raises the question of whether GMECCS, and other Max Ent models described by

Eqs. 1–5 (i.e., Replicator learners), is an exemplar model in disguise. This possibility is

reinforced by the observation that the predictions of GMECCS are largely determined by

the neighborhoods of the stimuli. In Section 4.1, we presented this fact in terms of stimuli

sharing the support of edge or face constraints, but it could also be viewed as a neighbor-

hood effect, with the constraints determining a similarity function.18 However, there are

also major differences between the Replicator form of GMECCS and exemplar models.

Most notably, it is not possible to tell from its state variables (the stimulus-probability

estimates) whether a trained GMECCS has actually encountered a given stimulus. Nor

does GMECCS generalize by comparing a new stimulus to similar old ones; rather, it

compares the probability estimates for the two different labelings of the new stimulus

with each other. GMECCS is thus not simply a notational variant on an exemplar model.
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It is a separate question whether the learning curves of GMECCS, or of the humans in

these experiments, can be replicated by an exemplar model with an appropriate similarity

function.19 When attentional learning is turned off, the exemplar model ALCOVE predicts

SHJ Types III and IV to be easier than Types II and V in supervised training without gen-

eralization (Kruschke, 1992, Fig. 5, p. 28). However, that has the side effect of collapsing

Type III with Type IV, and Type II with Type V. Restoring a moderate amount of atten-

tional learning makes Type II easier than Type V. These are said (p. 27) to be the only

two orderings that can be obtained. However, we do not know what ALCOVE (or other

exemplar-based models) predicts for generalization from unsupervised training.

8.2. Implications for phonology

The finding that two-feature patterns can be harder than three-feature patterns has

repercussions in phonology as well. The hypothesis that learners’ inductive bias favors

patterns that use fewer features has a long history in phonology. In The Sound Pattern of
English (SPE), Chomsky and Halle (1968, p. 334) propose a feature-counting “evaluation

measure” used by the learner to choose between hypotheses (candidate grammars) that

are equally consistent with experience. The measure is explicitly stated to be an inductive

bias in human learners (pp. 168, 221, 331). It is also proposed to predict which patterns

“will be more generally found among the languages of the world, will be more likely to

develop through historical change, etc.” (p. 411; see also p. 401). Chomsky and Halle do

not explicitly say how the evaluation measure can affect historical change and typological

frequency, but other authors explicitly hypothesize that it does so by biasing acquisition

and overriding experience in favor of grammars with lower feature counts (e.g., Bach &

Harms, 1972; King, 1969, pp. 88–89; Smith, 1973, pp. 155–158; Kiparsky, 1982). The
hypothesis of a feature-saving inductive bias remains current (e.g., Hayes, 1999; Hayes

et al., 2009; Pycha et al., 2003). In addition, phonological theory abounds in featural-sim-

plicity criteria, which, while not explicitly stated by their proponents to be inductive

biases, impose an SPE-like ordering on grammars. For instance, a principal standard by

which proposed distinctive-feature theories are evaluated is whether they can express

typologically-common patterns using a small number of features (Kenstowicz & Kisse-

berth, 1979, pp. 240, 332; McCarthy, 1988; Sagey, 1990, pp. 1–2; Kenstowicz, 1994, p.
21; Clements & Hume, 1995, p. 245; McCarthy, 2001; Padgett, 2002). The outcome of

Experiment 1 is unexpected under the feature-counting measure: If pattern learning is rule

learning, and n-feature rules are preferred to (n + 1)-feature rules, why are Types III–V
learned better than Type II? (The possibility that participants learned Types III–V using

an imperfect one-feature rule was addressed in Section 5.4.) If inductive bias does not

depend on feature count, then the motivations for feature theory, and the interpretation of

the typological and historical evidence bearing on it, may have to be rethought (see, e.g.,

Mielke, 2004).

But are the present results about the right kind of inductive bias? The assumption

(often unstated) behind work on lab-learned phonology is that laboratory studies engage

the same representations and processes that are used in natural acquisition. We do not
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know whether that assumption is accurate, or what conditions make it more accurate.

However, an important source of evidence is that of behavioral similarities and differ-

ences between performance in the lab and in nature. If GMECCS accurately models the

inductive biases relevant to natural-language acquisition, we would expect to see their

effects in natural first- and second-language acquisition. The depth and pervasiveness of

pattern-structure effects suggest that when other factors are controlled, pattern structure

should also influence natural-language typological frequency, since more difficult struc-

tures will tend to be changed or altered in transmission (Bach & Harms, 1972). Control-

ling these other factors is not trivial, because the innovation and extinction of

phonological patterns may be skewed by articulatory and perceptual biases in the pho-

netic channel between speakers and hearers (e.g., Barnes, 2002; Blevins, 2004; Hyman,

1976; Ohala, 1993). Earlier work on the typological frequencies of natural classes corre-

sponding to the SHJ Types has found a surprising resemblance, not to the results of

Experiment 2, but to those of the classical I > II > III, IV, V > VI order (Moreton &

Pertsova, 2014). A full account of typology will require modeling of not only the induc-

tive biases and the channel biases, but of their interaction during iterated learning (Grif-

fiths & Kalish, 2007; Griffiths, Kalish, & Lewandowsky, 2008; Rafferty, Griffiths, &

Ettlinger, 2013; see also Pater & Moreton, 2012, for preliminary work on iterated learn-

ing with MaxEnt grammars, and for references to related work on agent-based modeling).

8.3. How and why is phonological learning like concept learning?

When phonological pattern structure is manipulated, the effects on learnability are

strong and consistent—not only with each other (as reviewed in Moreton & Pater,

2012b), but, as we have now seen, also with analogous effects in non-linguistic learning

under comparable experimental conditions. Other structural effects seen in non-linguistic

domains are visible in phonology as well. Not every parallel that is sought is found (Fin-

ley & Badecker, 2010), but there is evidence for at least two.

First, an immense survey by Mielke (2004, 2008) has found that cross-linguistically,

phonological patterns tend to be based on sound classes that are expressible as conjunc-

tions, or low-order disjunctions, of phonetic features. This is consistent with non-linguis-

tic learning results from comparing conjunctions against other logical connectives such as

disjunctions and biconditionals (e.g., Bruner et al., 1956; Conant & Trabasso, 1964;

Haygood & Bourne, 1965; Hunt & Kreuter, 1962; Neisser & Weene, 1962), and there is

evidence that it holds for morphological learning as well (Pertsova, 2012).

Second, non-linguistic and phonological learning share a special sensitivity to intra-

dimensional Type II patterns (i.e., those based on agreement or disagreement between

two features of the same genus, like vowel height harmony) compared to inter-dimen-

sional ones (Lin, 2009; Moreton, 2008 2012). Intra-dimensional phonological patterns

are typologically common relative to inter-dimensional ones and are usually learned faster

in the lab. Likewise, intra-dimensional visual patterns are learned faster than inter-dimen-

sional ones (see review in Moreton, 2012, Section 1.3). The intra-dimensional advantage

has received little, if any, attention from modelers of non-linguistic pattern learning, but
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it is central to phonological theory (e.g., Alderete & Frisch, 2008; Goldsmith, 1976;

McCarthy, 1988; Rose & Walker, 2004).

Every time we come across another parallel between phonological and non-linguistic

learning, we have to ask: Where did it come from? And how many more are there? Do

the same learning processes serve all domains? Or do separate processes in different

domains have similar architectures? Or do they have different architectures whose emer-

gent structural biases partly coincide? What kinds of model exhibit the empirically cor-

rect biases? Evidence can be brought to bear on these hypotheses from many different

directions, in the lab and in nature, but they can only be addressed by the comparative
study of pattern learning and use across domains. Studying phonological learning is
studying concept learning, and vice versa.
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Notes

1. There are two ways of interpreting the mismatches between natural language

attestedness and ease of learning of artificial phonologies. One possibility is that

the cross-linguistic skews that do not correspond to learning ease have sources in

factors other than phonological inductive bias, for example in biases due to articu-

lation and perception, called channel bias by Moreton (2008). The other possibil-

ity is that the lab learning studies are not tapping the inductive biases that yield

skews in rates of attestation, perhaps because they are not sufficiently ecologically

valid.

2. The following equivalent description of an implementation of gradient descent for

MaxEnt may be useful to some readers. A single vector TD representing the train-

ing data is produced by first multiplying the vector of constraint scores for each

of the representations in the training data by its empirical probability, and then
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summing over these. A single vector representing the learner’s expectation (LE) is
generated in the same way, but by using the probabilities generated by the lear-

ner’s current constraint weights. The difference between these two vectors

(TD � LE) is multiplied by the learning rate. The resulting vector is then added

to the vector of current constraint weights to get the updated constraint weights.

3. We have also run on-line stochastic versions of our model, and as would be

expected, averaging over runs yields an approximation of the learning curves pro-

duced by the non-stochastic version we adopt here.

4. Regularization is used for several purposes, none of which apply here. One is to

prevent weights from going off towards infinity. None of our learning problems

have the properties that cause this to happen. Another is to prevent over-fitting.

We get generalization from the structure of our constraint sets and from looking

at relatively early stages in the trajectory of gradient descent. Finally, regulariza-

tion can be used to implement biases in learning, by selectively penalizing partic-

ular constraints for departing from a specified value—see especially Wilson

(2006). As we discuss in Section 4.1, the inductive biases of GMECCS emerge

from the structure of the constraint set.

5. In fact, as the Appendix shows, it is possible to eliminate them from any model

described by these equations, regardless of the constraint set used.

6. Gluck and Bower (1988a) reckon performance in terms of mean-squared predic-

tion error. Our own Configural Cue Model simulations (i.e., based on their

descriptions of the model) found the same orders in terms of proportion correct

and of log-odds correct.

7. We deviate here from the terminology of Gluck and Bower (1988a), who would

call such a constraint partially valid unless it is a face constraint.

8. Learning in GMECCS is faster with eight features than with three. This effect can

be seen in Eq. A1: Adding constraints increases n without reducing any of the

other variables, and so increases the size of the weight update Dpj. This seems

both paradoxical and counter-empirical, since human pattern learning is slowed by

irrelevant features (Kepros & Bourne, 1966). The paradox is due to the fact that

the learning rate g limits the weight adjustment to each individual constraint,

rather than the total weight adjustment to all constraints together. A model with

more constraints therefore gets to move further in its hypothesis space on each

learning step. The paradox could be removed by scaling the learning rate inversely

with the number of dimensions.

9. The reason for this prediction is that the training target for the Configural Cue

Model is exactly +1 or �1 on every trial. Consequently, it is possible for the net-

work to be “too good”: If the stimulus is a positive one, and the network’s output

is +2, the update rule will “correct” it downward. In order to correctly classify

the three peripheral stimuli in Type IV, the three valid edge constraints have to

have high weight. All three of them send activation to the central stimulus, making

it “too good” and causing the update rule to down-weight those edge constraints.

That, in turn, reduces performance on the peripheral stimuli. The same logic
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applies, less drastically, to Type III, where there are two central and two periph-

eral stimuli. In Types I, II, and VI, all stimuli have the same edge neighborhoods,

and there is no such conflict. This allows Type II to overtake the others after long

training of the Configural Cue Model. If the Configural Cue Model is trained using

what Kruschke (1992) calls a “humble teacher” (one that does not treat “too good”

outputs as errors), Type II eventually overtakes Type V, but not Types III or IV. In

the humble Configural Cue Model, Type IV eventually overtakes even Type I.

10. This criterion was chosen because it is significantly below chance at the 95%

level by an exact binomial test.

11. Since all Type I patterns involve only one feature, it is also possible to view Type

I patterns as having all features in the same segment and all features of the same

genus. There is no way to analyze our results to determine how much of Type I’s

advantage comes from using only one feature, and how much comes from not

mixing segments or genera.

12. The idea that rules may be represented and implemented as a tree of single-feature

decisions has a long history (e.g., Hunt, 1962; Hunt & Kreuter, 1962; Trabasso,

Rollins, & Shaughnessy, 1971), and has been successful in predicting classification

reaction times at the level of individual participants, and in explaining why individ-

uals often respond deterministically (see Lafond, Lacouture, & Cohen, 2009, for an

overview). The hypothesis that rules are stored as such trees has led researchers to

consider tree complexity as a predictor of the difficulty of learning a concept, with

equivocal results for both SHJ’s Type I versus Type II (Hunt, 1962, 230–235) and
for non-SHJ concepts (Haygood & Bourne, 1965). Several models of classification

reaction times are reviewed by Little, Nosofsky, and Denton (2011).

13. In Type IV, the Serial protocol requires 2 steps to classify the central stimulus,

and 2.66 steps to classify the peripheral ones, whereas in Type V, it requires two

steps for the central stimulus, 2.5 for each of the two peripheral stimuli, and 3

steps for the isolated stimulus (Bradmetz & Mathy, 2008, Table 4, which does not

address the Parallel or Random protocols). If the number of classification steps

predicts learning difficulty across patterns, then the prediction is that the central

stimuli in Types IV and V should be equally difficult, and that the peripheral

stimuli in Type V should be easier than those in Type IV. Those predictions do

not agree with the results in Fig. 11 above.

14. Since the definition of syntactic complexity is itself a model parameter, it

would in principle be possible to set that parameter so that two- or three-fea-

ture rules counted as “less complex” than one-feature rules, leading to a rule-

based model which tried two- or three-feature hypotheses first. However, such

a model would incorrectly predict that Type II would be easier than Type I,

whereas the task is to explain why Type I is near-perfect and easier than

Types II–VI. In other words, we are not saying that every rule-based model

predicts near-perfect Type I performance beside mediocre performance on

higher types; we are saying that the rule-based framework offers a natural

explanation, without special pleading.
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15. The coexistence of two functionally (and even neurologically) distinct learning

systems in the same domain is not by any means a novel proposal; see, for exam-

ple, Ashby et al. (1998) and Maddox and Ashby (2004) in vision, and Ullman

(2004) in language and Wong, Ettlinger, and Zheng (2013) in artificial phonology

learning in particular; for a critical review of multiple systems models of category

learning, see Newell, Dunn, and Kalish (2011).

16. This has the effect of treating a classification task as a stimulus-completion or

inference task. GMECCS at present does not distinguish classification from infer-

ence, although some other models do (Love, Medin, & Gureckis, 2004). There is

evidence that human learners in fact treat the two differently, and that, in particu-

lar, switching from classification to completion can boost performance on linearly

separable patterns relative to nonlinearly separable ones (Markman & Ross, 2003;

Yamauchi & Markman, 1998; Yamauchi, Love, & Markman, 2002). Hence, an

inference version of Experiment 3 would presumbaly find an even larger advan-

tage for Type IV over Type II. Thus, even if the nine-feature GMECCS is actu-

ally a more appropriate model of inference than of classification, it is still

supported (albeit more weakly) by the results of Experiment 3.

17. Another property which has been used to distinguish rule-based from (some) cue-

based learning models is the use of “algebraic” variables (Berent, Wilson, Marcus,

& Bemis, 2012; Marcus, Vijayan, Rao, & Vishton, 1999). The idea is that an appro-

priate rule-based learner, trained on the sequences AA, BB, CC, can form the gener-

alization xx, that is, “same letter twice,” and can recognize DD as conforming to it,

whereas connectionist or exemplar models could not. The participants in all three

of our experiments were sensitive to syllable reduplication (the Redup factor was

always significant). Those in Experiments 2 and 3 were additionally sensitive to

agreement/disagreement patterns (the Both Same Genus factor), and those in Exper-

iment 1 showed a non-significant trend in that direction. In the reduplication case, it

is clear that participant responses are affected by abstract relationship within the

stimulus, since any reduplicated test word was not heard in training. In the agree-

ment/disagreement case, the feature sequences that were preferred in testing (e.g.,

[+voice]. . .[+voice] and [�voice]. . .[�voice]) were actually experienced in train-

ing, and need not necessarily involve mental variables. Even if they do, those

results are neutral between a rule- and cue-based interpretation. If RULEX, for

instance, is augmented to allow variables in its two-feature rules, GMECCS and its

kin can be augmented to allow variables in its two-feature constraints (Gallagher,

2013; Moreton, 2012). If reduplication is allowed to be a dimension of similarity,

even prototype and exemplar models may be able to account for sensitivity to it.

18. In the Replicator update rule derived in the Appendix (Eq. A9), the (i,j)-th entry

of the matrix CTC is the dot product of the score vectors of the stimuli xi and xj,
that is, Ci;j ¼ Rn

k¼1ckðxiÞckðxjÞ. The dot product is a measure of similarity in con-

straint space (i.e., a kernel; Ashby & Alfonso-Reese, 1995; J€akel et al., 2009).

The matrix CTC can therefore be viewed as a similarity matrix defined by the

constraints. If the constraints are all binary (as they are in GMECCS), then the
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(i,j)-th entry of CTC is simply the number of constraints which have the value 1

for both xi and xj. For the GMECCS constraints, the number of constraints which

give 1 to both xi and xj grows as two to the power of the number of shared fea-

tures, so C measures featural similarity between stimuli.

19. The Replicator analysis of GMECCS suggests a possible empirical test: Because

the similarity matrix CTC in Eq. A9 is C times its own transpose, it is symmetric;

Stimulus xi is as similar to Stimulus xj as xj is to xi. Evidence that concept learn-

ing is governed by an asymmetric similarity function (Nosofsky, 1991; Tversky,

1977) would therefore tell against GMECCS and any variant obtained by substi-

tuting a different constraint set, as well as against any exemplar model with a

symmetric similarity measure.
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Appendix A
Gradient-descent Max Ent and the Replicator Equation

This appendix shows that any Maximum Entropy learner that uses (unregularized) gra-

dient descent on negative log-likelihood is equivalent, in terms of learning curves, to a

weightless model in which the updates are done directly on the stimulus probabilities

using a special case of the Replicator Equation from evolutionary biology. The equiva-

lence is not limited to GMECCS; it holds if any other constraint set is substituted for the

GMECCS constraints.
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We will use the following notation: there are m constraints (“features” in machine-

learning terms) fcigm1 , m weights fwigm1 , and n stimuli fxjgn1. The empirical expectation

of a random variable X is denoted Eemp½X�, while the learner’s expectation when the

weight vector w ¼ ðw1; . . .;wmÞ is Ew½X�. The first step in the derivation is to determine

how changing a weight wk affects the model’s expectation of ci. That expectation is just

the probability-weighted sum of ciðxjÞ for each stimulus xi:

@

@wk
Ew½ci� ¼ @

@wk

Xn
j¼1

PrðxjjwÞ � ciðxjÞ

¼
Xn
j¼1

@

@wk
PrðxjjwÞ � ciðxjÞ

¼
Xn
j¼1

ciðxjÞ � @

@wk
PrðxjjwÞ

� �
ðA1Þ

It is now necessary to determine how changing weight wi affects the model’s assignment

of probability to stimulus xj. We start with the definition of the stimulus probability in

Eq. 3 and differentiate it:

@

@wi
PrðxjjwÞ ¼ @

@wi

exp hwðxjÞ
Zw

ðA2Þ

After applying the quotient rule, we make the substitution @Zw=@wi ¼ Zw � Ew½ci� (which fol-
lows straightforwardly from differentiating Eq. 2), and then do a little more algebra to get:

@

@wi
PrðxjjwÞ ¼ exp hwðxjÞ

Zw
ðciðxjÞ � Ew½ci�Þ

¼ PrðxjjwÞ � ðciðxjÞ � Ew½ci�Þ
ðA3Þ

Substituting Eq. A3 into Eq. A1 now yields:

@

@wk
Ew½ci� ¼

Xn
j¼1

ciðxjÞ � PrðxjjwÞ � ðckðxjÞ � Ew½ck�Þ
� �

¼
Xn
j¼1

PrðxjjwÞ � ciðxjÞckðxjÞ þ ciðxjÞ � Ew½ck�
� �� �

¼ Ew½cick� � Ew½ci�Ew½ck�
¼ Covw½ci; ck�

ðA4Þ
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The gradient descent update rule in Eq. 5 tells us how the weights change, and Eq. A4

tells us how each weight change changes the expectations. Putting these together, we get

d

dt
Ew½ci� ¼

Xn
k¼1

@

@wk
Ew½ci� � @wk

@t

¼ g
Xn
k¼1

Covw½ci; ck� � ðEemp½ck� � Ew½ck�Þ
ðA5Þ

Now let the constraint set be augmented by adding, for every stimulus xj, a “characteris-
tic constraint” ĉj whose value is some small e for xj and is 0 for any other stimulus. The

characteristic constraints have three useful properties. The first is that the model’s probabil-

ity estimate for xj is proportional to the expected value of ĉj; that is, PrðxjjwÞ ¼ ð1=eÞEw½ĉj�
(this can be seen by setting e = 1). The second is that by choosing e sufficiently small, we

can reduce the characteristic constraints’ effect on the estimated stimulus probabilities to

any desired level, and thus cause the augmented learner to approximate the behavior of the

un-augmented learner as closely as we like. The third is that ĉj stands in a convenient rela-

tionship to any other constraint ci: ciðxkÞĉjðxkÞ ¼ ciðxjÞĉjðxjÞ if k = j, and is otherwise zero.

Hence, Ew½ciĉj� ¼ ciðxjÞ � Ew½ĉj�. The covariance between a characteristic constraint and

any other constraint is therefore

Covw½ci; ĉj� ¼ Ew½ci; ĉj� � Ew½ci�Ew½ĉj�
¼ ciðxjÞ � Ew½ĉj� � Ew½ci�Ew½ĉj�
¼ Ew½ĉj� � ðciðxjÞ � Ew½ci�Þ
¼ e � PrðxjjwÞ � ðciðxjÞ � Ew½ci�Þ

ðA6Þ

The covariance between two characteristic constraints is therefore bounded between the

negligibly small quantities �e2 and þe2, so we can safely ignore it. Now we can substi-

tute Eq. A6 back into Eq. A5 to get:

d

dt
PrðxjjwÞ ¼ d

dt

1

e
Ew½ĉj�

¼ g
Xm
i¼1

1

e
Covw½ci; ĉj� � ðEemp½ci� � Ew½ci�Þ

¼ g � PrðxjjwÞ �
Xm
i¼1

ðciðxjÞ � Ew½ci�Þ � ðEemp½ci� � Ew½ci�Þ
 ! ðA7Þ

For brevity, let pj ¼ PrðxjjwÞ, let qi ¼ Ew½ci�, and let qHi ¼ Eemp½ci�. Then Eq. A7

becomes
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d

dt
pj ¼ g � pj �

Xn
i¼1

ðciðxjÞ � qiÞ � ðqHi � qiÞ ðA8Þ

which completes the derivation of Eq. 6.

If the model’s current estimated probabilities fpjgn1 for all stimuli are known, then w is

not needed to evaluate Eq. A8, because we can calculate qi by simply adding up the

probability of each stimulus times its score on ci. To calculate q ¼ fqigm1 from

p ¼ fpjgn1, let C be the matrix whose jth column is the score vector of xj, that is,

Ci;j ¼ ciðxjÞ. Then q = Cp. If we let e ¼ pH � p be the model’s error, then Eq. A8

yields the following update rule:

Dpj ¼ g � pj½ðSeÞj � pTSe� ðA9Þ

where S ¼ CTC. The (i,j)-th entry of the symmetric matrix S is the dot product of the

score vectors of xi and xj, which is a measure of similarity between the two stimuli in

constraint-score space (e.g., if the constraints are binary-valued, Si;j is the number of con-

straints that give a 1 to both stimuli).

Equation (A9) is a special case of the more general update rule

Dpj ¼ g � pj½fðpÞj � pT fðpÞ� ðA10Þ

where f is any real vector-valued function of p. This equation arises in ecology, genetics,

and evolutionary biology under the name of the Replicator Equation. In the biological

interpretation, pj is the concentration of the j-th species in a closed ecosystem, and f
assigns a numerical fitness score to each species depending on the current distribution of

species. One class of Replicator systems, in which an individual’s fitness depends on a

time-varying environment, but not on other individuals’ fitness, is already known to be

related to Maximum Entropy (Karev, 2010). The Replicator systems studied here differ in

that an individual’s fitness depends on others’ fitness rather than on a time-varying

environment.

We can thus think of the weightless equivalents of GMECCS and related Max Ent

models as “Replicator learners.” If the fitness function f is chosen as in Eq. A9, the

Replicator learner behaves like the corresponding Max Ent learner. However, the class of

Replicator learners is strictly larger than the class of Max Ent learners (e.g., if the simi-

larity matrix S in Eq. A9 is not symmetric, then it cannot be expressed as CTC for any

constraint set); hence, Replicator learners provide both a new way to analyze Max Ent

learners, and a new way to generalize them.
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