LING/ANTH 520

Linguistic Phonetics

- Complex periodic waves
- Components and spectra

Background reading:

• AAP Ch 1, sec 1.3.2

0. Today's objectives

After today's class, you should be able to:

- Distinguish a complex periodic wave from a simple periodic wave (or an aperiodic wave) by its shape
- Explain and draw how sine waves add to produce complex waves
- Explain how a **spectrum** (line spectrum, power spectrum, spectral slice) represents a complex wave

0. Mindset

- If you have prior background in acoustics or even high-school physics, this may be review for you
 - But please note: The next few classes will build on one another quickly, so be sure you are solid on these basic ideas

0. Check-in: Lab #1

- Resources for connecting symbols to sounds
- Did you follow the instructions? Did you read the assigned Praat handouts #1-4 before doing the lab?
- The screenshot question
 - Zooming in to the right view
 - Playing a sound file / parts of a sound file
 - Highlighting the relevant area
 - Taking a screenshot
- Any other comments or questions?

- Review: A complex periodic wave
 - Why **periodic**? →
 - Why **complex**? →

- Review: A complex periodic wave
 - Why periodic? → has a repeating waveform
 - Why **complex**? → is not a sine wave

- What did you observe about musical notes [1] and
 [2] in the prep questions for today's class?
 - Simple or complex?
 - Which had the higher frequency?
 - Which had the higher average amplitude?

- Any complex periodic wave can be mathematically analyzed as a <u>combination</u> of simple periodic waves
 - The simple waves that combine to form a complex wave are its components
 - The process of finding the components of a complex wave is known as Fourier analysis; Praat does this for us
- Therefore, we can define (describe) any complex wave by listing its components
 - Each component (sine wave) can be defined by its amplitude and frequency (phase doesn't have much effect in speech analysis)

- Example: *AAP*, Ch 1, Figure 1.6 (p 15)
 - How are the first four waveforms related to the fifth?

- The fundamental frequency (f₀) of a complex periodic wave is the frequency with which the whole complex pattern itself repeats
- The fundamental frequency of a complex wave can be calculated:
 - → It is the greatest common <u>divisor</u> (GCD) of the frequencies of its components
 - **Error** in *AAP*, p 13: Johnson says "greatest common *denominator*," but this is wrong!

- The fundamental frequency of a complex wave can be calculated:
 - → It is the greatest common divisor (GCD) of the frequencies of its components
- Example: Suppose a complex wave has components at 200 Hz, 300 Hz, and 500 Hz
 - What is the fundamental frequency of this wave?

- The fundamental frequency of a complex wave can be calculated:
 - → It is the greatest common divisor (GCD) of the frequencies of its components
- Example: Suppose a complex wave has components at 200 Hz, 300 Hz, and 500 Hz
 - GCD (largest number that divides all evenly) = 100 Hz
 - The fundamental frequency of this complex wave is thus 100 Hz, *even though it has no component at 100 Hz* (we will test this shortly)

- Let's look at how adding sine waves together produces a complex wave:
 - Visit the web page "Wave Adder" (from Zona Land)
 - This interface lets you input the amplitude (**A**) and frequency (**f**) of individual sine waves, and add them together

- Using the "Wave Adder": How it works
 - The black box is where the waves will appear
 - The red line indicates one unit of **time** (say, 1 s)
 - To **draw** a sine wave, enter values in the boxes for **amplitude** and **frequency** and then click "Draw yellow" | We won't be using phase shift yet, and we'll keep the 'sine' box checked you can change these settings on your own if you are curious
 - To add the new wave to the previous combination, click "Add yellow to white"
 - To **start over**, click "Reset"

- Try it out: Using the "<u>Wave Adder</u>" to see what happens when sine waves are added
 - When you start the Wave Adder, the "Amplitude" box shows 10 and the "Frequency" box shows
 1 keep those values, A=10 and f=1
 - 2. Click "Draw yellow" to see this sine wave
 - 3. Click "Add yellow to white"; the wave changes to white, meaning it's added to the combination (since there are no other waves yet, the white wave has the same shape as the yellow one did)

- 4. Draw a new wave with the values A=2 and f=8 (put the values in the boxes and click on "Draw yellow")
- 5. Before you add the waves together, take a look: What should happen when these waves add?

- 4. Draw a new wave with the values A=2 and f=8 (put the values in the boxes and click on "Draw yellow")
- 5. Before you add the waves together, take a look:
 - At some time points, both the "big slow" wave and the "small fast" wave have displacement in the **same** direction, positive (up) or negative (down): these effects will **combine**
 - At other time points, the waves have displacement in **opposite** directions — these effects will (partially) cancel each other out
- 6. Click "Add yellow to white" Can you see how each sine wave contributes to the complex wave?

- Using the "Wave adder": Testing the GCD claim
 - Draw a sine wave with A=10 and f=2; add it
 - Draw a sine wave with A=8 and *f*=3; add it
 - Draw a sine wave with A=2 and *f*=5; add it
- What is the GCD of 2, 3, and 5 Hz? → GCD = **1 Hz**
- What is the fundamental frequency of the complex wave you have drawn?
 - → The wave repeats one time by the red line (= 1 s)
- This shows that a complex wave doesn't have to have a component at its fundamental frequency!

- Using the "Wave adder": Replicating AAP Fig 1.6 (p 15)
 - Draw a sine wave with A=10 and f=1; add it
 - Draw a sine wave with A=5 and f=2; add it
 - Draw a sine wave with A=3.3 and f=3; add it
 - Draw a sine wave with A=2.5 and f=4; add it
 - Draw a sine wave with A=2 and f=5; add it

How does your result compare with AAP Fig 1.6?

(Fig 1.6 details: AAP, p 16; to make this work on the Wave Adder, amplitudes are multiplied by 10 and frequencies divided by 100)

 In just this way, any complex wave can be represented as a combination of sine waves

- Here is another example of adding sine waves together: see the web page "<u>Standing Waves</u>, <u>Medium Fixed at Both Ends</u>" (from <u>Zona Land</u>)
 - The complex wave is shown in white
 - The component sine waves (called "harmonics" here; we'll learn that term later) are shown in other colors
 - You can add and remove components from the complex wave by clicking the check-boxes — try it and observe what effect this has

- Look at Figures 1.6 and 1.7 in AAP (pp 15, 16)
 - How is Fig 1.6 related to Fig 1.7?

- Look at Figures 1.6 and 1.7 in AAP (pp 15, 16)
 - How is Fig 1.6 related to Fig 1.7?
- What information do we need to state in order to describe a complex wave?

- Look at Figures 1.6 and 1.7 in AAP (pp 15, 16)
 - How is Fig 1.6 related to Fig 1.7?
- What information do we need to state in order to describe a complex wave? → List its components
- What kind of waves are the components of a complex wave?

- Look at Figures 1.6 and 1.7 in AAP (pp 15, 16)
 - How is Fig 1.6 related to Fig 1.7?
- What information do we need to state in order to describe a complex wave? → List its components
- What kind of waves are the components of a complex wave? → Sine waves
- What information do we need to state in order to describe a sine wave?

- Look at Figures 1.6 and 1.7 in AAP (pp 15, 16)
 - How is Fig 1.6 related to Fig 1.7?
- What information do we need to state in order to describe a complex wave? → List its components
- What kind of waves are the components of a complex wave? → Sine waves
- What information do we need to state in order to describe a sine wave? → frequency and amplitude (technically also phase, but we don't really need this for speech analysis)

- The **spectrum** of a wave is a graphic representing the amplitude and frequency of each component
 - Also called line spectrum, power spectrum, or (in Praat) spectral slice
- The graphic in *AAP* Fig 1.7 is the spectrum of the complex wave in Fig 1.6
- A sine wave has a spectrum, too how many lines are on it?

- The **spectrum** of a wave is a graphic representing the amplitude and frequency of each component
 - Also called line spectrum, power spectrum, or (in Praat) spectral slice
- The graphic in AAP Fig 1.7 is the spectrum of the complex wave in Fig 1.6
- A sine wave has a spectrum, too how many lines are on it?
 - → One line, for one sine-wave component

 What property is represented on each axis of a spectrum display?

- What property is represented on each axis of a spectrum display?
 - Amplitude on the y axis (vertical) and frequency on the x axis (horizontal)
 - Note that a spectrum does **not** represent **time**

- Let's use Praat to view a spectrum ("spectral slice")
 of note [2] from today's prep questions
 - Simple or complex wave?
 - Can we use the spectrum to determine the f_0 ?

You will work with spectral slices in Praat in Lab #2