Linguistic Phonetics

- Hypotheses and research qns
- Lab #08 intro

Background:

- Lab #06 (German vowels)
- Discussion question: Oral stop voicing

0. Today's objectives

After today's class, you should be able to:

- Use concepts and models in acoustic phonetics to state research questions or hypotheses about language data
- Use the myoelastic/aerodynamic model of phonation to make predictions about difficulties for oral-stop voicing
- Understand the goals of Lab #08 and being to state hypothesis and determine measurement criteria

Discussion

 Where do hypotheses and research questions come from in (acoustic) phonetics?

Discussion

 Where do hypotheses and research questions come from in (acoustic) phonetics?

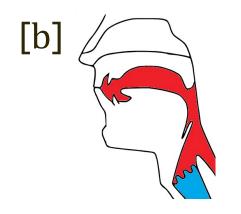
Some important sources:

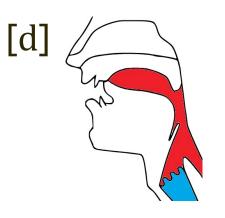
- Predictions of our models (source/filter model, multiple-tube model, perturbation theory, etc.)
- Claims from outside acoustic phonetics (maybe from: phonological theory, language typology, physics)

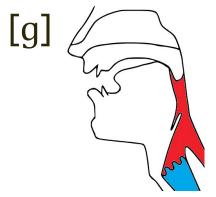
Examples from Lab #06

- "Long" vs. "short" vowels
 - A distinction with a basis in (non-instrumental, traditional) language description

Some RQs:

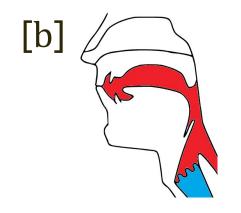

- Are "long" vowels consistently "longer"?
- Are there other differences between "long" and "short" vowels?
- What did you actually find?

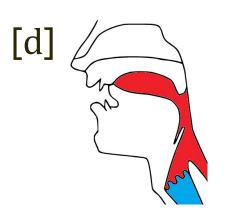

Examples from Lab #06


- Adding rounding to a high front vowel
 - What does perturbation theory predict?
 - What does the multiple-tubes model predict?
- What did you actually find?

2. Voicing in oral stops

- Some observations from linguistic typology:
 - If a language is missing one of the voiced oral stops [b d g], it is most likely to be missing [g]
 - WALS map (blue and purple = missing [g])
 - In some languages, voicing duration tends to be longer for oral stops formed further forward





2. Phonation: Myoelastic/aerodynamic theory

- Ease of voicing in oral stops: [b]>[d]>[g]
- The myoelastic/aerodynamic theory of phonation can help explain these facts — how?
 - Why is **supraglottal pressure** (air pressure in the vocal tract above the larynx) a crucial factor?
 - Why is [g] especially **difficult** for voicing?

2. Phonation: Myoelastic/aerodynamic theory

Potential research questions for Lab #08...

3. Praat, labs, and course material

- Key material in this course includes...
 - Basic facts about acoustics, speech sounds, Praat
 - How concepts build on each other
 - How we use models to make predictions
 - (- How to design a research study coming soon)
- Resources for mastering course material include...
 - Readings
 - Discussion outlines
 - Assignments: prep questions, labs
 Use these resources effectively to help you!

3. Praat, labs, and course material

- Use these resources effectively to help you!
 - The goal is not just to find an answer, but also to learn how to think
 - Go back over readings, outlines, assignments after class discussion
 - Download sound files from V&C (and other UCLA resources) and look at them in Praat to explore course concepts in a hands-on way
 - Use in-class lab time to learn from each other

4. Preparing for Lab # 08

Goals to focus on for today

- Work with your partner(s) to understand what tasks the lab involves doing
- Work with your partner(s) to formulate hypotheses
 - Update on where to focus in the Klatt reading
- Try measuring a few words from the Sindhi data and decide what measurement landmarks you will be using