Linguistic Phonetics

Airstream mechanisms: Ejectives, implosives, clicks

Phonation types

Optional reading for more information:

- *V&C* Ch 13, sec 13.8-13.9 (ejectives, implosives)
- *V&C* Ch 14, sec 14.5 (clicks)
- AAP Ch 8, pp 175-6 (ejectives, implosives, clicks)
- V&C Ch 13, sec 13.4-13.7 (phonation types)
- AAP Ch 8, sec 8.1.1, "Phonation types"

0. Today's objectives

After today's class, you should be able to:

- Explain the role of air pressure in egressive and ingressive airflow
- Explain the articulation that initiates airflow in pulmonic, glottalic, and velaric sounds
- Distinguish voiceless plosives from ejectives, and voiced plosives from implosives, in Praat
- Recognize breathy and creaky phonation by ear / in Praat
- Understand what the open quotient of phonation predicts about the H1-H2 relationship

Warm-up

Review from voicing discussion (fireplace bellows!)

 What conditions are necessary to cause a gas to move from one container into another?

 Assuming a flexible container, what change to the container's volume will cause a gas to move?

Warm-up

Review from voicing discussion (fireplace bellows!)

- What conditions are necessary to cause a gas to move from one container into another?
 - Gas moves from high pressure to low pressure
- Assuming a flexible container, what change to the container's volume will cause a gas to move?
 - Volume up → pressure down → gas moves in
 - Volume down → pressure up → gas moves out

- In order for there to be sound, there must be moving air (or other medium: water, helium, ...)
- In speech, something must set the air in motion
 - → This is known as an airstream mechanism
- So far, all the speech sounds we have discussed have had air moving outward, initiated by the lungs
 - This is the pulmonic egressive airstream mechanism
- There are three other possibilities...

Terminology for airstream mechanisms

Name for this class	Direction of airstream	Adjectival form	Air set in motion by
plosives (if oral stop ¹)	egressive	pulmonic	lungs
ejectives	egressive	glottalic	glottis
implosives	ingressive	glottalic	glottis
clicks	ingressive	velaric	velum

¹Most non-oral-stop consonants, all vowels are also pulmonic egressive

2. Pulmonic airstream mechanisms

- Pulmonic egressive most common airstream mechanism
 - Most speech sounds are pulmonic egressive
 - This includes all sounds of (standard) English
- How to get air to move out using the lungs?
 - Compress their volume → higher pressure → air moves out

2. Pulmonic airstream mechanisms

- Pulmonic ingressive airstream mechanism?
 - Physically possible (try talking while breathing in!)
 - Sometimes used for expressions of surprise, affirmation, etc. in different cultures [examples from Wikipedia]
 - Extremely rare or nonexistent in speech sounds

- The articulatory configuration for producing a glottalic airstream mechanism
 - Close the glottis (as if producing a glottal stop [?])
 - Form another stop constriction in the oral tract
 - Air is now trapped between the glottis and the other constriction
 - You should be unable to breathe through your nose while holding the two closures why?

- Language examples:
 - WALS map (ejectives in red or purple)
 - Sound file examples from *V&C*: see especially Quechua
- Most ejectives are (oral) stops or affricates, but fricatives are also possible
- There is a systematic convention for **transcribing** ejectives in the IPA what is it? (see *V&C*)

- An ejective is glottalic egressive
 - What do we need to do with the glottis to cause air to move **out of** the mouth when the oral closure is released?

- An ejective is glottalic egressive
 - What do we need to do with the glottis to cause air to move out of the mouth when the oral closure is released?
 - Volume between glottal and oral closures must get *smaller* → pressure **up** → air **out**
 - Raise the larynx!
 - Then, release oral closure
 - Last, release glottal closure

- In an ejective, the glottis remains tightly closed until just after the oral closure is released
 - Can an ejective be **voiced**? Why or why not?
 - See <u>diagram</u>

- In an ejective, the glottis remains tightly closed until just after the oral closure is released
 - Can an ejective be voiced? Why or why not?
 - **Impossible**: vocal folds can't vibrate while glottis is tightly closed

- What should an ejective stop look like on a waveform/spectrogram?
 - The burst is usually more salient than in a voiceless plosive — why?
 - If the sequence of events is oral release glottal release — (vowel), what do we expect this to look like on the waveform?

- Language examples
 - <u>WALS map</u> (implosives in blue or purple)
 - Sound file examples from V&C: see especially Sindhi, Owerri Igbo
- Implosives are nearly always (oral) stops
- What characteristic do IPA symbols for transcribing implosives have in common? (V&C)

- An implosive is glottalic ingressive
 - What do we need to do with the glottis to cause air to move **into** the mouth when the oral closure is released?

- An implosive is glottalic ingressive
 - What do we need to do with the glottis to cause air to move **into** the mouth when the oral closure is released?
 - Volume between glottal and oral closures must get *larger* → pressure **down** → air **in**
 - Lower the larynx!
 - Timing of release of oral and glottal closures probably less critical than in ejectives

- An implosive is almost always voiced
 - What happens to supraglottal air pressure if the glottis is vibrating while it is lowered?

- An implosive is almost always voiced
 - What happens to supraglottal air pressure if the glottis is vibrating while it is lowered?
- Consequences:
 - Air pressure may not be lower than zero
 (atmospheric pressure) in oral cavity when larynx
 is lowered
 - Air may not actually rush into mouth when oral closure is released

- What should an implosive look like on a waveform/spectogram?
 - Should the stop have a burst? If so, should it be weak or strong? Why?

- A difference between implosives and voiced plosives visible on the waveform
 - In an implosive, the amplitude of the voicing during closure generally increases (or at least does not decrease) leading up to the stop release
 - This indicates: it is **easier to maintain voicing** in an implosive, compared to a voiced plosive
 - Think about our discussion of voicing in plosives:
 Why might implosives be easier to voice?

- The starting point for producing a velaric airstream mechanism
 - Form a closure at the **velum** (just as for a velar stop)
 - Form another closure forward of the velum
 - Labial, dental, alveolar, postalveolar
- What effect does forming this <u>configuration</u> have on the ability to produce...
 - voicing?
 - nasality?

- The starting point for producing a velaric airstream mechanism
 - Form a closure at the **velum** (just as for a velar stop)
 - Form another closure forward of the velum
 - Labial, dental, alveolar, postalveolar
- What effect does forming this <u>configuration</u> have on the ability to produce...
 - voicing? | no effect! voiceless/voiced possible
 - nasality? | no effect! oral/nasal possible

- Clicks are possible at various places of articulation (see <u>IPA chart</u> for symbols)
 - bilabial click (like a flat-lipped 'kiss' sound)
 - dental click (like the sound that indicates disapproval)
 - (central) alveolar click
 - lateral alveolar click (like the noise made to get a horse to move)
 - palatoalveolar click

- To indicate whether a click is produced with nasality, or whether it is voiced or voiceless, it can be written together with a velar stop [k g ŋ]
 - By convention, the click sound is understood to be simultaneous with the preceding velar stop
- Language examples
 - WALS map (clicks in red)
 - Sound file examples from *V&C*: see especially Nama, Zulu, Xhosa

- A click is a velaric ingressive sound
 - What do we need to do for air to move into the mouth when the oral closure is released?

- A click is a velaric ingressive sound
 - What do we need to do for air to move into the mouth when the oral closure is released?
 - Volume between closures must get *larger* → pressure **down** → air **in**
 - Slide the tongue body down/back while maintaining the velar closure!
 - Then release forward closure, then velar
 - X-ray of a click, from V&C

- What might we predict about the acoustics of bursts in clicks? Why?
 - Note that the change in volume of the space between closures (before the forward closure is released) is proportionally large because the space itself is relatively small

- A velaric egressive sound is physically possible, but they are not known to occur as speech sounds
 - What would you have to do with a velaric airstream configuration to get the air to move out?

Reminder: Objectives

After today's class, you should be able to:

• • •

- Recognize breathy and creaky phonation by ear / in Praat
- Understand what the open quotient of phonation predicts about the H1-H2 relationship

 Review: What is the position of the vocal folds during modal (typical) voicing?

 What happens when the vocal volds are wide open, or when they are tightly closed?

VF wide open	VF adducted (not too tightly)	VF tightly closed
	voicing/phonation	

•

 What happens when the vocal volds are wide open, or when they are tightly closed?

VF wide open	VF adducted (not too tightly)	VF tightly closed
voicelessness	voicing/phonation	glottal stop (also voiceless)

- What predictions can we make for the acoustics of a glottal stop in the source-filter model?
 - What do we predict during the closure phase?
 - Do we predict a stop burst? Why or why not?
 - What do we predict about **formant transitions**?
 - Turns out, there are essentially no formant transitions for a glottal stop

Additional phonation types along this continuum

VF wide open	VF adducted (not too tightly)	VF tightly closed
voicelessness	voicing/phonation	glottal stop
VOICCICSSITCSS	modal	(voiceless)

5. States of the glottis

Additional phonation types along this continuum

VF wide open	VF adducted (not too tightly)			VF tightly closed
voicelessness	voicing/phonation			glottal stop
	breathy	modal	creaky	(voiceless)

6. Creaky phonation

 Vocal folds are open during a lower percentage of the phonation cycle than in modal phonation

Open quotient:

- Creaky: VF open for approx. 1/3 of cycle
- Modal: VF open for approx. 1/2 of cycle
- Configuration of vocal folds for creaky voicing
 - Generally adducted more tightly
 - May be totally closed along part of their length and vibrating only along another part

6. Creaky phonation

- Used in English for sociolinguistic effects
 - Older upper-class British speakers
 - Younger American speakers
- Sometimes known as "vocal fry"
 - See various posts <u>critiquing discussions of vocal</u>
 <u>fry in the media</u> from Language Log

6. Creaky phonation

- Used in other languages to distinguish phonemes (speech sound categories)
 - How do we transcribe creaky phonation?
 - **Sound files** see Mazatec (from *V&C*)
 - See also the <u>South American Phonological Inventory</u>
 <u>Database</u> for more languages
 - WALS map: Red symbols show languages with "glottalized resonants" (i.e., sonorants, most likely with creaky phonation)
- Creaky voice can be **phonologically** associated with either consonants or vowels (→ phonetics?)

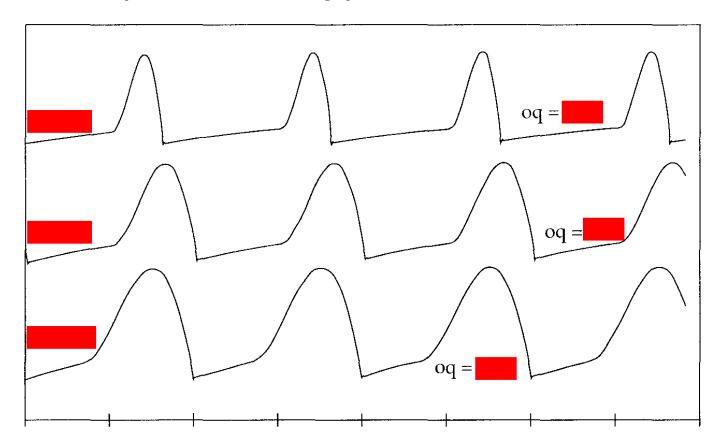
7. Breathy phonation

 Vocal folds are open during a higher percentage of the phonation cycle than in modal phonation

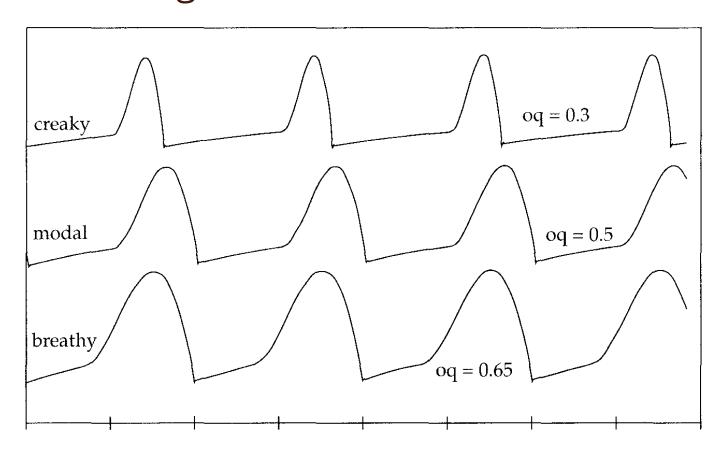
Open quotient:

- Modal: VF open for approx. 1/2 of cycle
- Breathy: VF open for approx. 2/3 of cycle
- Configuration of vocal folds for breathy voicing
 - Generally adducted more loosely
 - May be wide open along part of their length and vibrating only along another part
 - There may be a salient aperiodic source!

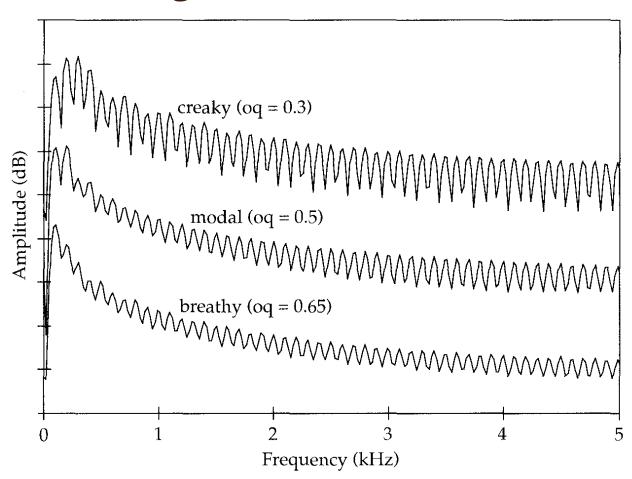
7. Breathy phonation


- In English, breathy voice may be a characteristic of individual speakers (or correlated with gender?)
- Used in other languages to distinguish phonemes (speech sound categories)
 - How do we transcribe breathy phonation?
 - **Sound files** compare <u>Hindi ("voiced aspirated")</u> and <u>Mazatec</u> (from *V&C*)
- As with creaky voice, breathy voice can be
 phonologically associated with either consonants
 or vowels (→ phonetics?)

8. Acoustics of phonation types


- 2 ways of looking at acoustics of phonation types
 - Open quotient and H1 relative amplitude
 - Periodicity and other cues
- The characteristics discussed here may be relied upon to different degrees in different languages!
 - Moreover, languages may use breathy or creaky voice together with other phonetic effects, complicating the picture

- One <u>articulatory</u> difference among phonation types is the **open quotient** — the proportion of each cycle of VF vibration during which the glottis is open
 - Breathy: VF open for approx. 2/3 of cycle
 - Modal: VF open for approx. 1/2 of cycle
 - Creaky: VF open for approx. 1/3 of cycle
- This difference predicts <u>acoustic</u> consequences for the **spectrum** of the **glottal source wave**


Glottal-source waveforms (synthesized) | AAP Fig 8.2
 Which phonation type matches which diagram?

Glottal-source waveforms (synthesized) | AAP Fig 8.2
 Which diagram is most like a sine wave?

Glottal-source spectra (synthesized) | AAP Fig 8.3
 Which diagram is most like a sine wave? How?

- Prediction: Breathy ph. most like a sine wave
 - First glottal harmonic (H1) has highest amplitude
 - **Spectral slope:** Relative amplitudes of harmonics drop off most quickly
- Note: These characteristics might not be visible for cases of breathy phonation where the aperiodic sound source is predominant
 - See Mazatec example above

- We predict that modal, creaky phonation get progressively more different from breathy
 - First glottal harmonic (H1) has amplitude similar to second in modal phonation
 - First glottal harmonic (H1) has amplitude
 lower than next few in creaky phonation
 - Spectral slope: Relative amplitudes of harmonics drop off less quickly in modal phonation and least quickly in creaky phonation

- Reminder: We've been talking about properties of the glottal-source waveform
 - What do we need to be careful about in inferring properties of the glottal-source spectrum in speech sounds?
 - → What else might affect the relative amplitude of glottal harmonics besides differences in phonation type?

10. Periodicity and other cues

- Creaky voice: Waveform/spectrogram
 - Stiff vocal folds often vibrate more slowly and irregularly, leading to lower fundamental frequency and glottal pulses that are visibly further apart (possibly also irregularly spaced)
 - On waveform, component corresponding to F1 may be very salient
 - "Arrowhead" effect often visible in waveform

10. Periodicity and other cues

- Breathy voice: Waveform/spectrogram
 - Longer open quotient may lead to portions of the phonation cycle that are similar to aspiration
 - → as noted above, may have a considerable aperiodic component
 - Often has **lower amplitude** than modal voice
 - Waveform may show less well-defined effect of formants (because breathy phonation doesn't excite vocal-tract resonances as well)

11. Summary: Phonation types

VF wide open	VF adduct	VF tightly closed		
voicelessness	voicii	glottal stop		
VOICCICSSITCSS	breathy	modal	creaky	(voiceless)