Conformal anomaly and photon anisotropy in heavy ion collisions

Gökçe Başar

Stony Brook University

04/11/2013

GB, D. Kharzeev & V. Skokov arXiv:1206.1334Phys. Rev. Lett. 109, 202303 (2012)

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

- Direct photons in heavy ion collisions
- ▶ Magnetic fields in heavy ion collisions
- ▶ Conformal anomaly and bulk viscosity
- Explanation of the mechanism
- Comparison with PHENIX data and experimental signatures
- ▶ Future outlook and conclusions

Direct photons

- Small cross section: information on various stages of evolution
- Prompt (high P_T)
 - Initial hard scatterings
 - Fragmentation good agreement with pp data
- Medium effects
 - Jets + medium
 - Thermal photons (QGP, HG) (low p_T)
- ▶ Other sources?
 - ▶ Glasma (Chiu,..,Liao, McLerran et. al.)
 - ▶ B field (GB, Kharzeev, Skokov, Fukushima, Tuchin)

(figure:R. Stock)

Direct photons

▶ Enhancement at low p_T , steep slope \rightarrow high T, early time

► T_{ave} =221 MeV , T_{in} =300-600 MeV (τ_0 =0.15-0.6 fm)

$$\frac{dN}{d^2p_T} = \frac{dN}{2\pi p_T dp_T} \sum_{n=1}^{\infty} \left(1 + 2v_n \cos(n\phi)\right)$$

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

$$\frac{dN}{d^2p_T} = \frac{dN}{2\pi p_T dp_T} \left(1 + 2v_2 \cos(2\phi) + \dots\right)$$

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

$$\frac{dN}{d^2p_T} = \frac{dN}{2\pi p_T dp_T} \left(1 + 2v_2 \cos(2\phi) + \dots\right)$$

experiment (PHENIX) :

$$\frac{dN}{d^2p_T} = \frac{dN}{2\pi p_T dp_T} \left(1 + 2v_2 \cos(2\phi) + \dots\right)$$

experiment (PHENIX) :

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

√) Q (

6.0

< ロト (四) (三) (三)

• puzzle: high T \leftrightarrow early time, $v_2 \leftrightarrow$ flow, late time

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

< □ > < 4

anisotropy \neq flow

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

æ

< Ξ

anisotropy \neq flow

background magnetic field \rightarrow source of anisotropy

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

anisotropy \neq flow

background magnetic field \rightarrow source of anisotropy

magnetic field + bulk modes of plasma \rightarrow photons!

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

Strong magnetic fields are generated by the spectators

 $B\sim m_\pi^2\sim 10^{14}T$

- ▶ Refrigerator magnet $\sim 10^{-2}T$
- ▶ MRI ~ $10^0 T$
- Levitating frog: 14T (Berry, Geim)
- Strongest continuous field: 45T (NHMFL)
- ▶ Strongest non-destructive pulsed field $\sim 10^2 T$
- ► Strongest destructive pulsed field $\sim 10^3 T$
- ▶ Neutron star $\sim 10^6 T$
- ▶ Magnetar $\sim 10^9 T$

Gökçe Başar

Conformal anomaly and photon anisotropy in heavy ion collisions

Strong magnetic fields are generated by the spectators (Kharzeev,McLerran,Warringa; Skokov, Illarionov, Toneev, Bzdak)

 $B\sim m_\pi^2\sim 10^{14}T$

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

Magnetic field + axial anomaly:

- ▶ Chiral magnetic effect → Charge separation (Fukushima, Kharzeev, McLerran, Warringa, Zhitnitsky)
- ► Chiral magnetic wave \rightarrow Charge dependent v_2 (Burnier, Kharzeev, Liao ,Yee)
- ▶ Chiral magnetic spiral → In plane current correlations (GB, Dunne, Kharzeev)

Magnetic field + axial anomaly:

- ▶ Chiral magnetic effect → Charge separation (Fukushima, Kharzeev, McLerran, Warringa, Zhitnitsky)
- ► Chiral magnetic wave \rightarrow Charge dependent v_2 (Burnier, Kharzeev, Liao ,Yee)
- ▶ Chiral magnetic spiral → In plane current correlations (GB, Dunne, Kharzeev)

Photons from magnetic field:

▶ Photons from local parity violation (Fukushima, Mameda)

► Synchrotron radiation of quarks (Tuchin)

This talk :

Magnetic field + conformal anomaly \Rightarrow anisotropic photon production

"conversion of bulk modes of QGP into real photons

This talk :

Magnetic field + conformal anomaly \Rightarrow anisotropic photon production

"conversion of bulk modes of QGP into real photons

in the presence of magnetic field through conformal anomaly"

scale transformation:

 $x^{\mu} \to \lambda \, x^{\mu}$

associated current: dilatational current

$$\partial_{\mu}S^{\mu} = \theta^{\mu}_{\mu} = m_f \bar{\psi}_f \psi_f$$

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ∽ ۹ (~

scale transformation:

 $x^{\mu} \rightarrow \lambda \, x^{\mu}$

associated current: dilatational current

 $\partial_{\mu}S^{\mu} = \theta^{\mu}_{\mu} = 0$

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ∽ ۹ (~

scale transformation:

 $x^{\mu} \to \lambda \, x^{\mu}$

associated current: dilatational current

$$\partial_{\mu}S^{\mu} = \theta^{\mu}_{\mu} = -\frac{\beta(g)}{2g}\operatorname{tr}(G^2)$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

scale transformation:

 $x^{\mu} \rightarrow \lambda \, x^{\mu}$

associated current: dilatational current

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ∽ ۹ (~

scale transformation:

 $x^{\mu} \rightarrow \lambda \, x^{\mu}$

associated current: dilatational current

(세종) 세종) 문

dilatational current \rightarrow generates color singlet, scalar states of mass m_{σ} with amplitude f_{σ} (dilaton)

 $\langle 0|S^{\mu}|\sigma \rangle = iq^{\mu}f_{\sigma} \qquad \langle 0|\partial_{\mu}S^{\mu}|\sigma \rangle = m_{\sigma}^2 f_{\sigma}$

- 3

dilatational current \rightarrow generates color singlet, scalar states of mass m_{σ} with amplitude f_{σ} (dilaton)

$$\langle 0|S^{\mu}|\sigma\rangle = iq^{\mu}f_{\sigma}$$
 $\langle 0|\partial_{\mu}S^{\mu}|\sigma\rangle = m_{\sigma}^{2}f_{\sigma}$

coupling to electromagnetism: $\mathcal{L}_{\sigma\gamma\gamma} = g_{\sigma\gamma\gamma}\sigma F^2$ (Ellis et al. '70s)

dilatational current \rightarrow generates color singlet, scalar states of mass m_{σ} with amplitude f_{σ} (dilaton)

$$\langle 0|S^{\mu}|\sigma\rangle = iq^{\mu}f_{\sigma}$$
 $\langle 0|\partial_{\mu}S^{\mu}|\sigma\rangle = m_{\sigma}^{2}f_{\sigma}$

coupling to electromagnetism: $\mathcal{L}_{\sigma\gamma\gamma} = g_{\sigma\gamma\gamma}\sigma F^2$ (Ellis et al. '70s)

$$\int dxdy \, e^{i(px+qy)} \langle \theta^{\mu}_{\mu}(0) J_{\alpha}(x) J_{\beta}(y) \rangle = (p.qg_{\alpha\beta} - q_{\alpha}p_{\beta}) \frac{R\alpha}{3\pi}$$

٠

dilatational current \rightarrow generates color singlet, scalar states of mass m_{σ} with amplitude f_{σ} (dilaton)

$$\langle 0|S^{\mu}|\sigma\rangle = iq^{\mu}f_{\sigma} \qquad \langle 0|\partial_{\mu}S^{\mu}|\sigma\rangle = m_{\sigma}^2 f_{\sigma}$$

coupling to electromagnetism: $\mathcal{L}_{\sigma\gamma\gamma} = g_{\sigma\gamma\gamma}\sigma F^2$ (Ellis et al. '70s)

$$\int dxdy \, e^{i(px+qy)} \langle \theta^{\mu}_{\mu}(0) J_{\alpha}(x) J_{\beta}(y) \rangle \to (p.qg_{\alpha\beta} - q_{\alpha}p_{\beta}) \frac{R\alpha}{3\pi} \frac{m_{\sigma}}{(p+q)^2 - m_{\sigma}^2}$$

dilatational current \rightarrow generates color singlet, scalar states of mass m_{σ} with amplitude f_{σ} (dilaton)

$$\langle 0|S^{\mu}|\sigma \rangle = iq^{\mu}f_{\sigma} \qquad \langle 0|\partial_{\mu}S^{\mu}|\sigma \rangle = m_{\sigma}^2 f_{\sigma}$$

coupling to electromagnetism: $\mathcal{L}_{\sigma\gamma\gamma} = g_{\sigma\gamma\gamma}\sigma F^2$ (Ellis et al. '70s)

$$\int dxdy \, e^{i(px+qy)} \langle \theta^{\mu}_{\mu}(0) J_{\alpha}(x) J_{\beta}(y) \rangle \to (p.qg_{\alpha\beta} - q_{\alpha}p_{\beta}) \frac{R\alpha}{3\pi} \frac{m_{\sigma}}{(p+q)^2 - m_{\sigma}^2}$$

PCDC (Gell-Mann, Carruthers)

"Partially zero trace" P0T (Ellis, Crewther)

identify σ with lightest scalar meson : $f_0(500)$

$$m_{\sigma} = 550 MeV \quad , \quad \Gamma(\sigma \to \gamma\gamma) = g_{\sigma\gamma\gamma}^2 \frac{m_{\sigma}^3}{4\pi} \approx 5 KeV$$
$$R \equiv \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-)} = 5 \quad (\text{PDG 2012})$$
fix:

$$g_{\sigma\gamma\gamma} \approx 0.02 GeV^{-1} \qquad f_{\sigma} \approx 100 MeV$$

3

Bulk viscosity of QGP part I: introduction

In QGP, conformal anomaly is governed by *bulk viscosity* (ζ)

• response to compression/rarefaction

$$\theta_{ij} = P(\epsilon)\delta_{ij} - \eta \left(\partial_i u_j + \partial_j u_i - \frac{2}{3}\delta_{ij}\partial_k u^k\right) - \zeta \,\delta_{ij}\vec{\nabla}\cdot\vec{u}$$

• linear response:

$$\zeta = \frac{1}{9} \lim_{\omega \to 0} \frac{1}{\omega} \int_0^\infty dt \int d^3x \, e^{i\omega t} \langle [\theta_{ii}(x), \theta_{jj}(0)] \rangle = \frac{1}{9} \lim_{\omega \to 0} \frac{G_{ii,jj}^R(\omega, 0)}{\omega}$$

$$\left|\underbrace{\overset{B\otimes}{\longrightarrow}}_{\gamma}\right|^{2} = 2 \operatorname{Im}\left[\underbrace{\overset{B\otimes}{\longrightarrow}}_{\gamma}\right]^{2}$$

$$q_0 \frac{d\Gamma}{d^3 q} = 2 \left(\frac{g_{\sigma\gamma\gamma}}{\pi f_\sigma m_\sigma^2}\right)^2 \frac{B_y^2 q_x^2 + B_x^2 q_y^2}{\exp(\beta q_0) - 1} \rho_\theta(q_0 = |\vec{q}|)$$

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

æ

$$\left|\underbrace{\overset{B\otimes}{\longrightarrow}}_{\gamma}\right|^{2} = 2 \operatorname{Im}\left[\underbrace{\overset{B\otimes}{\longrightarrow}}_{\gamma}\right]^{2} = 2 \operatorname{Im}\left[\underbrace{\overset{B\otimes}{\longrightarrow}}_{\gamma}\right]$$

$$q_0 \frac{d\Gamma}{d^3 q} = 2 \left(\frac{g_{\sigma\gamma\gamma}}{\pi f_\sigma m_\sigma^2}\right)^2 \frac{B_y^2 q_x^2 + B_x^2 q_y^2}{\exp(\beta q_0) - 1} \rho_\theta(q_0 = |\vec{q}|)$$

 $B_x^2 \neq B_y^2 \Rightarrow \text{Anisotropy!} \Rightarrow \text{nonzero } v_2!$

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ∽ ۹ (~

$$\left|\underbrace{\overset{B\otimes}{\longrightarrow}}_{\gamma}\right|^{2} = 2 \operatorname{Im}\left[\underbrace{\overset{B\otimes}{\longrightarrow}}_{\gamma}\right]^{2} = 2 \operatorname{Im}\left[\underbrace{\overset{B\otimes}{\longrightarrow}_{\gamma}\right]^{2} = 2 \operatorname{Im}\left[\underbrace{\overset{B\otimes}{\operatorname$$

$$q_0 \frac{d\Gamma}{d^3 q} = 2 \left(\frac{g_{\sigma\gamma\gamma}}{\pi f_\sigma m_\sigma^2}\right)^2 \frac{B_y^2 q_x^2 + B_x^2 q_y^2}{\exp(\beta q_0) - 1} \rho_\theta(q_0 = |\vec{q}|)$$

 $B_x^2 \neq B_y^2 \implies \text{Anisotropy!} \implies \text{nonzero } v_2!$ anisotropy \neq flow !

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

▲ 車 ▶ ▲ 車 ▶ ● 車 ● � � � �

$$q_0 \frac{d\Gamma}{d^3 q} = 2 \left(\frac{g_{\sigma\gamma\gamma}}{\pi f_\sigma m_\sigma^2} \right)^2 \frac{B_y^2 q_x^2 + B_x^2 q_y^2}{\exp(\beta q_0) - 1} \rho_\theta(q_0 = |\vec{q}|)$$

spectral function of bulk modes (hydro) (Hong, Teaney):

• real photons $(q_0 = |\vec{q}|)$ are away from sound peak $(q_0 = c_s |\vec{q}|)$

$$q_0 \frac{d\Gamma}{d^3 q} = 2 \left(\frac{g_{\sigma\gamma\gamma}}{\pi f_\sigma m_\sigma^2} \right)^2 \frac{B_y^2 q_x^2 + B_x^2 q_y^2}{\exp(\beta q_0) - 1} \rho_\theta(q_0 = |\vec{q}|)$$

spectral function of bulk modes (hydro) (Hong, Teaney):

• real photons $(q_0 = |\vec{q}|)$ are away from sound peak $(q_0 = c_s |\vec{q}|)$

$$q_0 \frac{d\Gamma}{d^3 q} \quad \approx \quad 2 \left(\frac{g_{\sigma\gamma\gamma}}{\pi f_\sigma m_\sigma^2} \right)^2 \frac{B_y^2 q_x^2 + B_x^2 q_y^2}{\exp(\beta q_0) - 1} \frac{9q_0}{\pi} \zeta$$

spectral function of bulk modes (hydro) (Hong, Teaney): $\rho_{\theta}(q_0, \vec{q}) = \frac{1}{\pi} \mathcal{I}m[G_{\theta, \theta}^R(q_0, \vec{q})] \approx \frac{9q_0 \zeta}{\pi}$ Real photons

• real photons $(q_0 = |\vec{q}|)$ are away from sound peak $(q_0 = c_s |\vec{q}|)$

$$q_0 \frac{d\Gamma}{d^3 q} \approx 2 \left(\frac{g_{\sigma\gamma\gamma}}{\pi f_\sigma m_\sigma^2}\right)^2 \frac{B_y^2 q_x^2 + B_x^2 q_y^2}{\exp(\beta q_0) - 1} \frac{9q_0}{\pi} \zeta$$

spectral function of bulk modes (hydro) (Hong, Teaney): $\rho_{\theta}(q_0, \vec{q}) = \frac{1}{\pi} \mathcal{I}m[G_{\theta, \theta}^R(q_0, \vec{q})] \approx \frac{9q_0 \zeta}{\pi}$ Real photons

• real photons
$$(q_0 = |\vec{q}|)$$
 are away from sound peak $(q_0 = c_s |\vec{q}|)$

▶ Lattice SU(3) (Meyer) difficult to extract

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

- ▶ Lattice SU(3) (Meyer) difficult to extract
- ▶ Kinetic theory (Jeon, Moore, Arnold, Doğan, Dusling, Schäfer)

$$\zeta = C_{\zeta} \left(\frac{1}{3} - c_s^2\right)^2 \eta$$

- ▶ Lattice SU(3) (Meyer) difficult to extract
- ▶ Kinetic theory (Jeon, Moore, Arnold, Doğan, Dusling, Schäfer)

$$\zeta = C_{\zeta} \left(\frac{1}{3} - c_s^2\right)^2 \eta$$

(deviation from conformality $c_s^2 = 1/3$)

- Lattice SU(3) (Meyer) difficult to extract $(C_{\zeta} = 90)$
- ▶ Kinetic theory (Jeon, Moore, Arnold, Doğan, Dusling, Schäfer)

$$\zeta = C_{\zeta} \left(\frac{1}{3} - c_s^2\right)^2 \eta$$
$$\downarrow$$

(deviation from conformality $c_s^2 = 1/3$)

• photons + hot matter $C_{\zeta} = 15$ (Weinberg, '71)

- Lattice SU(3) (Meyer) difficult to extract $(C_{\zeta} = 90)$
- ▶ Kinetic theory (Jeon, Moore, Arnold, Doğan, Dusling, Schäfer)

$$\zeta = C_{\zeta} \left(\frac{1}{3} - c_s^2\right)^2 \eta$$

(deviation from conformality $c_s^2 = 1/3$)

- photons + hot matter $C_{\zeta} = 15$ (Weinberg, '71)
- QCD (RTA) $C_{\zeta} = 15$ (Dusling, Schäfer, '11)
- ► QCD (Leading log, pure glue) $C_{\zeta} \approx 48$ (Dusling, Schäfer, '11)

- Lattice SU(3) (Meyer) difficult to extract $(C_{\zeta} = 90)$
- ▶ Kinetic theory (Jeon, Moore, Arnold, Doğan, Dusling, Schäfer)

$$\zeta = C_{\zeta} \left(\frac{1}{3} - c_s^2\right)^2 \eta$$

(deviation from conformality $c_s^2 = 1/3$)

- photons + hot matter $C_{\zeta} = 15$ (Weinberg, '71)
- QCD (RTA) $C_{\zeta} = 15$ (Dusling, Schäfer, '11)
- ► QCD (Leading log, pure glue) $C_{\zeta} \approx 48$ (Dusling, Schäfer, '11)
- phenomenological constraints $C_{\zeta} \approx 2-5$

- Lattice SU(3) (Meyer) difficult to extract $(C_{\zeta} = 90)$
- ▶ Kinetic theory (Jeon, Moore, Arnold, Doğan, Dusling, Schäfer)

$$\zeta = C_{\zeta} \left(\frac{1}{3} - c_s^2\right)^2 \eta$$

(deviation from conformality $c_s^2 = 1/3$)

- photons + hot matter $C_{\zeta} = 15$ (Weinberg, '71)
- ► QCD (RTA) $C_{\zeta} = 15$ (Dusling, Schäfer, '11)
- ► QCD (Leading log, pure glue) $C_{\zeta} \approx 48$ (Dusling, Schäfer, '11)
- phenomenological constraints $C_{\zeta} \approx 2-5$

• use the most conservative values: $C_{\zeta} = 2 - 5$, $\frac{\eta}{s} = \frac{1}{4\pi}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Bulk viscosity of QGP part III: equation of state

• Lattice calculation of
$$\langle \theta_{\mu}^{\mu} \rangle = \epsilon - 3p$$

• Effective theory for $T = 1.2 - 4T_c$ (Pisarski et al..)
• Mean field potential V_{eff} for $q \sim A_0$
 $V = \sum_n c_n \operatorname{tr}[\mathbf{L}^n + \mathbf{L}^{\dagger n}]$, (Ünsal,Yaffe)
 $V_{eff}(q) = V_{pert}(q) T^4 + V_{non}(q) T_c^2 T^2$
 $\frac{dV_{eff}}{dq}|_{q=\langle q \rangle} = 0$, $p(T) = -V_{eff}(\langle q \rangle) = a T^4 + b T_c^2 T^2$

• V_{non} : strings, monopoles, dyons, bions...?? \rightarrow fitted to lattice

Bulk viscosity of QGP part III: equation of state

• Lattice calculation of
$$\langle \theta_{\mu}^{\mu} \rangle = \epsilon - 3p$$

• Effective theory for $T = 1.2 - 4T_c$ (Pisarski et al.²)
• Mean field potential V_{eff} for $q \sim A_0$
 $V = \sum_n c_n \operatorname{tr}[\mathbf{L}^n + \mathbf{L}^{\dagger n}]$, (Ünsal,Yaffe)
 $V_{eff}(q) = V_{pert}(q) T^4 + V_{non}(q)T_c^2 T^2$
 $\frac{dV_{eff}}{dq}|_{q="} = 0"$, $p(T) = -V_{eff}(\langle q \rangle) = a T^4 + b T_c^2 T^2$

• V_{non} : strings, monopoles, dyons, bions...?? \rightarrow fitted to lattice

Bulk viscosity of QGP part III: equation of state

• Lattice calculation of
$$\langle \theta_{\mu}^{\mu} \rangle = \epsilon - 3p$$

• Effective theory for $T = 1.2 - 4T_c$ (Pisarski et al.)
• Mean field potential V_{eff} for $q \sim A_0$
 $V = \sum_n c_n \operatorname{tr}[\mathbf{L}^n + \mathbf{L}^{\dagger n}]$, (Ünsal,Yaffe)
 $V_{eff}(q) = V_{pert}(q) T^4 + V_{non}(q)T_c^2 T^2$
 $\frac{dV_{eff}}{dq}|_{q="} = 0"$, $p(T) = -V_{eff}(\langle q \rangle) = a T^4 + b T_c^2 T^2$

• V_{non} : strings, monopoles, dyons, bions...?? \rightarrow fitted to lattice \Rightarrow use the model for $s(T), c_s^2(T)$

Explanation of the mechanism: parameters

$$p_0 \frac{d\Gamma}{d^3 p} = \frac{9p_0}{2\pi^4} \left(\frac{g_{\sigma\gamma\gamma}}{f_{\sigma}m_{\sigma}^2}\right)^2 \frac{B_y^2 p_x^2 + B_x^2 p_y^2}{\exp(\beta p_0) - 1} \left(\frac{1}{3} - c_s^2\right)^2 s(T)$$

• Bjorken expansion
$$\frac{T}{T_0} = \left(\frac{\tau_i}{\tau}\right)^{1/3}$$

- Initial time: $\tau_i = 0.1 fm/c$
- Initial temperature: $T \approx 350 MeV$
- ▶ Equation of state: effective theory
- ▶ Magnetic field: spectators + fluctuations, time dependent
- Overall normalization: P0T $(\sigma \rightarrow \gamma \gamma)$

Transverse momentum spectrum

- ▶ vanishes as p_T^2 at low p_T
- overcomes thermal rate above 1 GeV
- ▶ higher p_T : prompt photons

v_2 : comparison with PHENIX data

Gökçe Başar Conformal anomaly and photon anisotropy in heavy ion collisions

Experimental signatures

- Polarization of photons
- Violation of $v_4 \sim v_2^2$ scaling
- ▶ Turn off magnetic field ? \rightarrow central U-U collision
- ► Turn off flow ? \rightarrow non central events without hadron v_2 (Bzdak, Skokov) fluctuations in initial geometry
- ▶ Impact parameter dependence

Experimental signatures

- Polarization of photons
- Violation of $v_4 \sim v_2^2$ scaling
- ▶ Turn off magnetic field ? \rightarrow central U-U collision
- ► Turn off flow ? \rightarrow non central events without hadron v_2 (Bzdak, Skokov) fluctuations in initial geometry
- ▶ Impact parameter dependence

need good statistics!!

Future

 \blacktriangleright Non-equilibrium dynamics: Glasma + B field \rightarrow γ

- ▶ Photons from glasma $(Q_s^{-1} < t < t_{therm})$ (McLerran et. al.)
- ▶ Need fluctuations around classical gluonic fields; $\rho_{\theta}(q_0, \vec{q})$
- ► Topological charge fluctuations in QGP + B field $\rightarrow \gamma$ in progress (GB, Kharzeev, Loshaj)
- ▶ Anomaly + B field \rightarrow dileptons

▶ Induced magnetic field in the plasma: MHD

Future

- ▶ Lower energies: beam energy scan at RHIC
 - as $\sqrt{s} \downarrow$, B goes down but t_0 goes up
 - Mangeto-hydrodynamics
 - Bulk viscosity increases near T_c (Karch, Kharzeev, Tuchin) possible signatures?

Future

- ▶ Lower energies: beam energy scan at RHIC
 - ▶ as $\sqrt{s} \downarrow$, B goes down but t_0 goes up
 - Mangeto-hydrodynamics
 - Bulk viscosity increases near T_c (Karch, Kharzeev, Tuchin) possible signatures?

- Higher energies: LHC in progress (GB, Kharzeev, Skokov)
- $\sqrt{s} = 2.76 TeV$
- ALICE: $T_{av} = 304 \pm 51 MeV$
- Initial time and temperature?

- ▶ Anomalies + magnetic fields \rightarrow observable signatures in HIC
- Conformal anomaly $+ B \rightarrow significant$ contribution to photon v_2
- Answer to the photon v_2 puzzle: *anisotropic* emission at *early times*
- ▶ Experimentally distinguishable properties (need good statistics)
- ▶ Improvements are on the way: stay tuned!