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Outline

Lecture I: Basics of WKB and local analysis
Lecture II: Global analysis, Stokes automorphisms, exact quantization

Lecture III: Exact quantization, a geometric approach

References that I follow the closest:

e Delabaere Pham, Resurgent methods in semi-classical asymptotics
o Kawai, Takei, Algebraic Analysis of Singular Perturbation Theory
e Voros, Spectre de L'équation de Schrodinger et Méthode BKW
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Laact WKB in a nutshell

Time independent Schrodinger equation

h* d°
e Y e .= Lyl

Wave-functions? , Spectrum ?

w(x, h), E(h) : Resurgent functions of 7

A" e, log h...

BPS spectra of JV/ = 2 SUSY theories [Nekrasov, Shatashvili,...]
wall crossing [Gaiotto, Moore, Nietzke...], cluster algebras [Iwaki, Nakanishi],

Integrable models [Dorey, Dunning, Tatteo...], ...
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Riccau bguation

x2

d2
(_d_ + A~ 2Q(x)) w;h) =0, QO):=2V(x) - E)

WKB Ansatz: Ww(x; h) :=e —5 I P(x:h)dx
0 dP

Resurgent expansion: P(x; 1) ~ Py(x) + hP(x) + thz(x) + ...

i

depend on E

*assume V(x): polynomial, see [Koike, Schafke] for V(x): rational function
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Riccau bguation

PO i) ~ Y RP,(x) P2(x; 1) — hZ—P — 0
n=0 X

Zeroth order solution: Py +(x) = £ 4/0(X)

Two branches <= independent solutions of the Schrodinger eqn.

Omnce the branch is chosen, the higher order terms are determined recursively
(without solving any differential equation!):

[Dunham, 1932]



Riccau bguation

We can organize the expansion as

AN : h d
Pi(x’ h) 2 even(x h) + odd(x’ h)* Odd(x) e lOg even(x) =
/ \ i
VO + h2Py(x) + ... APy (x) + WPP3(x) + ...

h L1 1
l/f(.x, h) = \/P (x h) e el I even(x h)dx 07 —h Ixo Qx)d Z l//n +(x)hl’l+1/2
even\-\s

. 10 \2 ) 1
e \/Z(V(x) ) ) S5Vi(x)"+4(—E + V(x)V"(x) =
324/2(=E + V(x))>?

*: the even/odd label here agrees with Delabaere/Pham but is opposite of Takei.

Note: From now on I will drop the “even” subscript from P
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WKB and resurgence

w(x; h) = 4

(09
53 [ Poenlsh)dx 2} 1/0G)dx Z v, (ORI
Iz even(x; h) n

e Each l//n’i(x) 1S holomorphic near U = {x e C | Q(x) == 0 and Q(x) — holomorphic}

eForany KC U dAg Cy st |y, | <AgCln!l, Vx€K
|Kawai, Takei]

e v : resurgent asymptotic series, whose coefficients depend on x and E.

sl

e [t is Borel summable in the absence of Stokes phenomenon

e Exact WKB : (i) Patching local WKB expansions in different Stokes regions
to construct and analytic function of x.

(ii) exact quantization condition f(E)=0: determines E as a
resurgent function



Classical Mechanics

e.g.: anharmonic oscillator

V(x) = %@ﬂ Eilbye

Turning points <
A

Qx) =2(V(x) - E) =0

)7
0 th order Riccati: Hamilton-Jacobi * P*(x; h) —%<= O(x)

v )——l<—0>2+V( ) =E
SLR A e

Py(x)dx

l

Classical action Sy(x) = J

X

* note that the “momentum”, p, differs from the physics convention by a factor of i
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Classical Mechanics

e.g.: anharmonic oscillator

V(x) = %@ﬂ Eilbye

Turning points <~
A

Qx) =2(V(x) - E) =0

AP

So(E) = ZJ 2Po(x)dx = — 2i[ 2\/Z(E — V(x))dx

1 1

dSo(E) Zinz

wo(E) = == dx = 2mi X (Classical period)
n V2(E - V(x))

dE
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Classical Mechanics

Spectral curve: ¥ = {(p,x) € C|p? — O(x) =0} : complex hyper-elliptic curve

4
e.g.: anharmonic oscillator p?—V(x) —E :=p* - H (x —x(E)) =0  g=1 elliptic curve
i=1

Moduli space
parameter

S, o) = <Jg Py(x)dx S, olE) = fl; Py(x)dx

71 i

1/ O 4 144
. . Tunneling action
Classical action s

WKB actions +— 7, € H{(2)
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Classical Mechanics

0! I; I:- oy — ’,
ok e ' « z 5 7
I .' 4 ~
L|mry o
\ / / .
moduli space

degenerate points
S },i,O(E) = ¢ Pyx)dx
Vi i 0

Solutions of Picard-Fuchs equation Singularities of PF eqn

To be continued...
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Local analysis: 1urning points and Stokes lines

Near a turning point

@k ) S P — ) e Syl e i

v=1: simple turning point, v=2: double turning point etc...

g

Stokes lines
Im[7A~1S,(x)] = 0

v=1 v=2
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Steepest descent and Stokes lines

1
X = xp+ix %So(x) = fr(X) + if;(x)

e Consider the curves, x(z), parameterized by 7 and satisfy

dx _ o)

dr  ox

2

d
:ﬁ > (),

dt

of

o0x

djs .
e Steepest descent curves

1
® Re [—S (x)] increases fastest b " . y
[h i steepest ascent”,”Lefschetz thimbles”,

“fading lines” [DDP] , ....
o o~ 7#5%W decreases fastest fading

exercise: show that x(z) satisfy a gradient flow equation for Sor and a Hamiltonian equation

where So; is the Hamiltonian and (xg, x1) is the canonical pair
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Steepest descent and Stokes lines

recall 6_0 = Py(x)  Turning points: fixed points of flow
X

* Around a simple turning point Po(x) - \/;, So(x) — 2 /3y
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Steepest descent and Stokes lines

recall a—o = Py(x)  Turning points: fixed points of flow
X

* Around a simple turning point  P(x) = \/;, Sh e E=SolRhel

b
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Steepest descent and Stokes lines

recall a—o = Py(x)  Turning points: fixed points of flow
X

* Around a simple turning point  P(x) = \/;, Sh e E=SolRhel

P
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Steepest descent and Stokes lines

Steepest descent curves emanating
from a turning pt.

Stokes line Im[A~1S,(x)] =0 I

2




Steepest descent and Stokes lines

\ !

Stokes lines move with E

X1
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Steepest descent and Stokes lines

\ l
Stokes lines move with E
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Steepest descent and Stokes lines

1 l
Stokes lines move with E




Steepest descent and Stokes lines

Stokes lines move with E x\
1
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Steepest descent and Stokes lines

Let’s see what happens around a
generic simple turning point...
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Borel summation

(©9)

C
A)~e n Y c A" Bf(s) = " (s — S,y L
et ). £(s) Z‘)FW( )
asymptotic series
eiQOO
SolABf1(h) = J dse™ B () 0 :=argh
S

* fis Borel summable if there are no singularities
along the integration contour

Note: from now on [ will simply used’ gy ( Or Sy)
to denote Borel summation

23
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Borel summation

® fis not Borel summable if there are singularities
along the integration contour

e This might happen for certain values of 6 or
when the location of the singularities S., Q.
depend on some other parameters in the problem
(moving singularities) . In the WKB problem both
of these things happen.

e We can slieghtly change these parameters to move
gntly g p

the singularity out of the way: Lateral Borel
summation

24
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Lateral Borel summation.s

Q>x< S* 0 T C‘g+
([ _AVAVAVAVAVAVAVAVAVAVAY, &V AN
G _
s_piny:= [ asetaages . )= | dse™t o
G_ S>x< 9 . SE +

Stokes phenomenon:

S, f(h) —S_f(h) = J ds e~ Bf(s) := ie 70§ Jo(h)
5% t "\

exponentially suppressed resurgent function

Alien derivative: Ay f = ify Stokes automorphism: © =&, S_" = ePo
generalize to multiple singularities

. ] . ) ) > - _LQ*
pointed alien derivative: Ag, = e "= A, e e e S hiappa

A Primer on Resurgent Transseries and Their Asymptotics]
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https://inspirehep.net/literature/1657961

bBorel summation for WKB

w(x, h) = cop, (x;h) + c_y_(x; i)

o0 i0
. +ls 172 S :
W ) ~ eSS0 Ny (R Syl = | dseF Byl
n £50(x)
* Moving singularities: positions depend on x, E Contour for Sy_ |
e Let's assume E is generic (all turning points are simple) So(x) \
O =

w(x; i) is Borel summable as long as

¢ =

-1
Im[7~"So(x)] # O &

Contour for Sy,
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Borel summation

& 9) 10
I € o0 -
Wi (x;h) ~ e £7:5000) Z '/fn,i(x)hnﬂ/z Sop(h) = J dse n Bly(x)](s)
n £850(x)
* Moving singularities: positions depend on x, E
|-
e Let’s assume E is generic (all turning points are simple)
S50(X)
w(x; ) is not Borel summable when . .
Im[7A~1S,(x)] = 0 — S, (x)

e This happens when two turning points are
by a Stokes line (“degenerate Stokes line”)

i

27



Borel plane: crossing the Stokes line

e?oo

Wwi(x; i) ~ =TS Z WG S (h) = J ds e Bly(x)](s)
n £S0(x)

e Assume =0, A >0, ReSyx)>0 -y, :exp.large, w_:exp.small

— l
G, & s et alternatively

So(x)
—L 2 c 1 0\ /¢
¢\ \ NV h ( > L
. (e T ()= 1))

iz Ay =0

Strategy: 1) Analyze the Stokes phenomena around each turning point to construct locally
2) Patch the local solutions to construct the global wave-function.
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Stokes automorphisms, local analysis

e Let’s analyze the Stokes phenomena near a turning point
2(V(x) — E) ~ c(x — xx)

e shift, rescale x such that the turning point is at x=0
b7

d2
(—hzd— - x> w(x) =0 Airy equation

2 :
2
classical action: Sy(x) = [ \/;’dx’ ot §3/2
0

o s — AL
Resurgent expansion: Wa(x) = e*"'3* W, ()R
8 p
n=0

W =Ccy, +Ccy_
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Airy equation

1 dP, L
From Riccati recursion relations, P, (x) = 2P(%) ( I o Z{ P .(x)P n+1_k(x))

Py=+/x, Py = (2x)7), P,(x) oc x~17320-D () oc x= 14320
Exercise: find the coefficients

Borel transform

| & ; : N2
By (s) = — it + N N
vls) X ’E) ['(n+1/2) <x3/2 5 > by £(sx)

L
|

30



Airy equation

mostly from [Kawai, Takei]

X

; 42 Borel tr. 52 Py 1 -
—h ﬁ+x w(x) =0 s ﬁ_xd_sz —B, (sx™") =0

2

8B(S) + 27AdB + (957 4)d 2 0
S Sfaaee Sed T
ds ds>

=

N

Hypergeometric differential equation

B.(s) : independent solutions

EARE i 3s+1_1/2F5111+3S
§) X = s == i ipwy U
L ) E L\ e

Exercise: derive this from the explicit coefficients
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Airy equation

Vu-—1 S| 1 3
o F o 1 —u =

e M N +
X 5 D 2 4R

dlmf.nist.gov

Chapter 15 Hypergeometric Function

A.B. Olde Daalhuis
School ol Matheabies. ECoburgh Univarsaty, Edinbargl, Unsted Kingdou.

Connection formula (Stokes phenomenon):

F (5 : 1'u+i€> F (5 : 1'u i€> i(1+u)1/2(u 1)_1/2 F (5 . | u) u> 1
200\ =77 > — 200\ s U = 2 2\ = 1 — s
6 6 2 6 6 2 6 6 2
I > ]I i
By (5) — By, (s) + iBy_(s) -
By_(s) = By_(s) @ ik
. 2 =)
A%x3/zl/j+ == ll/j_, Asl/jz() h— _§x3/2
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http://dlmf.nist.gov

Airy equation

w(x) =y (x) + p_(x)

2 ~»—
3/2
==X N7 32 312
3 C R Ne%zs Ne%23 ~ e %23
>
w_(x) = w_(x)
()= i 1) (&)
C_/B S NG
Ls.
X2 QMWW
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Airy equation

T p () = Y () + iy ()
2
. e
| 2132 L1312 "
2.3 qwammanny S RN N

i, (x) = y(x)

R LAY ¥
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Atry equation

Crossing the branch cut:

w(x; h) = \/ o 7 [x Peven(: )l
g VOX) — —1/0) = Pop(x; 1) = = Py (x5 1)

W Mb”ECi _oi>

Monodromy:

check: MMM M, M, = <(1) (1)>
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Airy equation

wx) =c oy +c_y |

2
~ COS —|x|2/3—£
3 4
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Airy equation

l//(X) =Ly + c_y_
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From local to global analysis

Outlook for lecture 11

e In general there are multiple turning points.

e Around each turning point we have local solutions of the form
Ly, +Cc_y_
where ¢, c_ are resurgent functions (x independent) and uniquely

determined once the branches for p are chosen.

e Globally we have resurgent functions that are solutions of the Schrédinger
equation and depend analytically on x, constructed by gluing the cs obtained
from different turning points

Yo~ Ly, YL
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From local to global analysis

)
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