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Lecture I: Basics of WKB and local analysis

Lecture II: Global analysis, Stokes automorphisms, exact quantization

Lecture III: Exact quantization, a geometric approach

References that I follow the closest: 

• Delabaere Pham, Resurgent methods in semi-classical asymptotics
• Kawai, Takei, Algebraic Analysis of Singular Perturbation Theory
• Voros, Spectre de L’équation de Schrödinger et Méthode BKW



Exact WKB in a nutshell
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(− ℏ2

2
d 2

dx2 + V(x)) ψ(x; ℏ) = E ψ(x; ℏ)

Time independent Schrödinger equation

Wave-functions? , Spectrum ?

ψ(x, ℏ), E(ℏ) : Resurgent functions of ℏ

ℏn, e− C
ℏ , log ℏ…

BPS spectra of                   SUSY theories [Nekrasov, Shatashvili,…]

 wall crossing [Gaiotto, Moore, Nietzke…], cluster algebras [Iwaki, Nakanishi], 
 Integrable models [Dorey, Dunning, Tatteo…],… 

# = 2



Riccati Equation
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ψ(x; ℏ) := e− 1
ℏ ∫x

x0
P(x;ℏ)dx

P2(x; ℏ) − ℏ dP
dx

= Q(x)

P(x; ℏ) ∼P0(x) + ℏP1(x) + ℏ2P2(x) + …

depend on E 

(− d 2

dx2 + ℏ−2Q(x)) ψ(x; ℏ) = 0, Q(x) := 2(V(x) − E)

Resurgent expansion:

WKB Ansatz:

*assume V(x): polynomial, see [Koike, Schafke] for V(x): rational function



Riccati Equation
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P(x; ℏ) ∼
∞

∑
n= 0

ℏnPn(x)

P0,± (x) = ± Q(x)

2P0(x)Pn+1(x) + dPn

dx
+

n

∑
k= 1

Pk(x)Pn+1−k(x) = 0

Once the branch is chosen, the higher order terms are determined recursively 
(without solving any differential equation!):

P1(x) − 1
2

d
dx

log P0(x) = 0

P2(x; ℏ) − ℏ dP
dx

= Q(x)

Two branches                           independent solutions of the Schrödinger eqn. 

Zeroth order solution:

[Dunham, 1932]



Riccati Equation
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P± (x; ℏ) := ± Peven(x; ℏ) + Podd(x; ℏ)*

Q(x) + ℏ2P2(x) + … ℏP1(x) + ℏ3P3(x) + …

Podd(x) + ℏ
2

d
dx

log Peven(x) = 0

We can organize the expansion as  

*: the even/odd label  here agrees with Delabaere/Pham but is opposite of Takei.   

ψ(x; ℏ) = ℏ
Peven(x; ℏ) e± 1

ℏ ∫x
x0

Peven(x;ℏ)dx ∼e± 1
ℏ ∫x

x0
Q(x)dx

∞

∑
n

ψn,± (x)ℏn+1/2

P0(x) = 2(V(x) − E), P2(x) = − 5V′�(x)2 + 4(− E + V(x))V′�′�(x)
32 2(− E + V(x))5/2

, …

Note: From now on I will drop the “even’’ subscript  from P



WKB and resurgence
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• Each ψn,± (x) is holomorphic near  U = {x ∈ ℂ |Q(x) ≠ 0 and Q(x) = holomorphic}

ψ(x; ℏ) = ℏ
Peven(x; ℏ) e± 1

ℏ ∫x
x0

Peven(x;ℏ)dx ∼e± 1
ℏ ∫x

x0
Q(x)dx

∞

∑
n

ψn,± (x)ℏn+1/2

[Kawai, Takei]

• For any K ⊂ U ∃AK, CK s.t. |ψn,± | < AKCn
k n !, ∀x ∈ K

•        resurgent  asymptotic series, whose coefficients depend on x and E.
•  It is Borel summable in the absence of Stokes phenomenon
• Exact WKB : (i) Patching local WKB expansions in different Stokes regions                         

ψ :

(ii) exact quantization condition  f(E)=0: determines E as a 
resurgent function

to construct and analytic function of x.     



Classical Mechanics 

!8

− 1
2 p2 + V(x) = − 1

2 ( dS0
d x )

2
+ V(x) = E

0 th order Riccati:  Hamilton-Jacobi *

* note that the “momentum”, p, differs from the physics convention by a factor of i

S0(x) = ∫
x

xi

P0(x)d xClassical action

Turning points
E

x1 x2 x3 x4

Q(x) = 2(V(x) − E) = 0

V(x) = 1
8 (x2 − 1)2

e.g.: anharmonic oscillator

P2(x; ℏ) − ℏ dP
d x

= Q(x)

x

ip



Classical Mechanics 
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S0(E) = 2∫
x2

x1

P0(x)d x = − 2i∫
x2

x1

2(E − V(x))d x

ω0(E) = d-0(E)
dE

= − 2i∫
x2

x1

1
2(E − V(x))

d x = 2πi × (Classical period)

Turning points
E

x1 x2 x3 x4

Q(x) = 2(V(x) − E) = 0

V(x) = 1
8 (x2 − 1)2

e.g.: anharmonic oscillator

x

ip



Classical Mechanics 
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Σ = {(p, x) ∈ ℂ |p2 − Q(x) = 0} :Spectral curve: complex hyper-elliptic curve

p2 − V(x) − E := p2 −
4

∏
i= 1

(x − xi(E)) = 0 g=1 elliptic curve e.g.: anharmonic oscillator

γ1 γ2

-γ1,0(E) = ∮γ1

P0(x)d x

E
γ1

γ2

Sγ2,0(E) = ∮γ2

P0(x)d x

Classical action “Tunneling action"

Moduli space
parameter 

γi ∈ H1(Σ)WKB actions



Classical Mechanics 
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E

moduli space

γi = 0
Edegenerate points

e.g.

Solutions of Picard-Fuchs equation Singularities of PF eqn

-γi,0(E) = ∮γi

P0(x)d x

To be continued…



Local analysis: Turning points and Stokes lines
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Q(x) ≈ (x − x*)ν, P0(x) ≈ (x − x*)ν/2, S0(x) ≈ (x − x*)ν/2+1

Near a turning point 

 1=1: simple turning point, 1=2: double turning point etc…

Im[ℏ−1S0(x)] = 0

 1=1

x

 1=2

x

Stokes lines



Steepest descent and Stokes lines
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•                  decreases fasteste− 1
ℏ S0(x)

•                    increases fastest

Steepest descent curves

Re [ 1
ℏ S0(x)] “steepest ascent”,“Lefschetz thimbles”, 

“fading lines” [DDP] , ….

x := xR + ixI
1
ℏ S0(x) := fR(x) + ifI(x)

•Consider the curves, x(2), parameterized by 2 and satisfy

d x
dτ

= ∂f(x(τ))
∂x

⇒ dfR
dτ

= ∂f
∂x

2

> 0, dfI
dτ

= 0

exercise: show that x(2) satisfy a gradient flow equation for S0,R  and a Hamiltonian equation
where S0,I is the Hamiltonian and (xR, xI) is the canonical pair



Steepest descent and Stokes lines
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recall 
∂S0
∂x

= P0(x) Turning points: fixed points of flow

 1=1

x

• Around a simple turning point P0(x) = x, S0(x) = 2/3x3/2

fR(x) = ReS0

xR

xI



Steepest descent and Stokes lines
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recall 
∂S0
∂x

= P0(x) Turning points: fixed points of flow

 1=1

x

• Around a simple turning point P0(x) = x, S0(x) = 2/3x3/2

 1=1

p



Steepest descent and Stokes lines
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recall 
∂S0
∂x

= P0(x) Turning points: fixed points of flow

 1=1

x

• Around a simple turning point P0(x) = x, S0(x) = 2/3x3/2

 1=1

p



Steepest descent and Stokes lines
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 1=1

x

Steepest descent curves emanating
from a turning pt.  

Stokes line Im[ℏ−1S0(x)] = 0 ⇔

 1=2

x

 1=3

x



Steepest descent and Stokes lines
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E
x1 x2 x3 x4

Stokes lines move with E



Steepest descent and Stokes lines
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Ex1 x2 x3 x4

Stokes lines move with E



Steepest descent and Stokes lines
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E

x1 x2
x3 x4

Stokes lines move with E

 1=2



Steepest descent and Stokes lines
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E

x1 x2
Stokes lines move with E



Steepest descent and Stokes lines
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E

x1 x2
Stokes lines move with E

Let’s see what happens around a 
generic simple turning point…



Borel summation
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f(ℏ) ∼e− S*ℏ

∞

∑
n= 0

cnℏn ℬf(s) =
∞

∑
n= 0

cn

Γ(n) (s − S*)n−1

-θ[ℬf ](ℏ) = ∫
eiθ∞

S*

ds e− s
ℏ ℬf(s)

• f is Borel summable if there are no singularities 
along the integration contour

s

S*

Q*

θ := arg ℏ

Note: from now on I will  simply use                           
 to denote Borel summation 

-θψ ( or -ψ)

asymptotic series



Borel summation
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s

S*

Q*

• f is not Borel summable if there are singularities 
along the integration contour

• This might happen for certain values of      or 
when the location of the singularities             
depend on some other parameters in the problem  
(moving singularities) . In the WKB problem both 
of these things happen. 

• We can slightly change these parameters to move 
the singularity out of the way: Lateral Borel 
summation 

θ
S*, Q*



Lateral Borel summations
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S*

Q*

-− f(ℏ) := ∫8−

ds e− s
ℏ ℬf(s)

8−

S*

Q*

-+ f(ℏ) := ∫8+

ds e− s
ℏ ℬf(s)

8+

Stokes phenomenon:

-+ f(ℏ) − -− f(ℏ) = ∫δ8
ds e− s

ℏ ℬf(s) := ie− 1
ℏ Q*-− fQ(ℏ)

Q*

δ8S*

exponentially suppressed resurgent function

Alien derivative: ΔQ*
f = ifQ

pointed alien derivative: ·ΔQ*
:= e− 1

ℏ Q*ΔQ*

Stokes automorphism: : = -+ ∘ -−
− = e

·ΔQ*

generalize to multiple singularities 
see e.g. [Aniceto, Basar, Schiappa, 

A Primer on Resurgent Transseries and Their Asymptotics]

https://inspirehep.net/literature/1657961


Borel summation for WKB
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ψ± (x; ℏ) ∼e± 1
ℏ S0(x)

∞

∑
n

ψn,± (x)ℏn+1/2 -θ[ℬψ± ](ℏ) = ∫
eiθ∞

± S0(x)
ds e− s

ℏ ℬ[ψ(x)](s)

• Moving singularities:  positions depend on x, E

• Let’s assume E is generic  (all turning points are simple)

ψ(x; ℏ) is Borel summable as long as 

Im[ℏ−1S0(x)] ≠ 0

s

S0(x)

− S0(x)

Contour for -ψ+

ψ(x, ℏ) = c+ψ+(x; ℏ) + c−ψ−(x; ℏ)

Contour for -ψ−



Borel summation
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s

S0(x)

ψ± (x; ℏ) ∼e± 1
ℏ S0(x)

∞

∑
n

ψn,± (x)ℏn+1/2

− S0(x)
ψ(x; ℏ) is not Borel summable when 

Im[ℏ−1S0(x)] = 0

• This happens when two turning points are 
 by a Stokes line (“degenerate Stokes line”)

x

-θψ± (ℏ) = ∫
eiθ∞

± S0(x)
ds e− s

ℏ ℬ[ψ(x)](s)

• Moving singularities:  positions depend on x, E

• Let’s assume E is generic  (all turning points are simple)



Borel plane: crossing the Stokes line
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ψ± (x; ℏ) ∼e± 1
ℏ S0(x)

∞

∑
n

ψn,± (x)ℏn+1/2 -θψ± (ℏ) = ∫
eiθ∞

± S0(x)
ds e− s

ℏ ℬ[ψ(x)](s)

• Assume  θ = 0, ℏ > 0, ReS0(x) > 0 → ψ+ : exp. large, ψ− : exp. small

ψ+ → ψ+ + iψ−

ψ− → ψ−

s
S0(x)

− S0(x)
8−

8+
δ8

ΔS0(x)ψ+ = iψ−

(c+
c−) → (1 0

i 1) (c+
c−)

alternatively

Δsψ− = 0

Strategy:  1) Analyze the Stokes phenomena around each turning point to construct locally 
                   2) Patch the local solutions to construct the global wave-function. 



Stokes automorphisms, local analysis 
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•Let’s analyze the Stokes phenomena near a turning point

2(V(x) − E) ≈ c(x − x*)

•shift, rescale x such that the turning point is at x=0

(− ℏ2 d 2

d x2 + x) ψ(x) = 0

S0(x) = ∫
x

0
x′�d x′� = 2

3 x3/2classical action:
x

ψ± (x) = e± ℏ 2
3 x3/2

∞

∑
n= 0

ψn± (x)ℏn+ 1
2Resurgent expansion:

ψ = c+ψ+ + c−ψ−

x=0

Airy equation



Airy equation
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Borel transform

ℬψ± (s) = 1
x

∞

∑
n= 0

cn±
Γ(n + 1/2) ( s

x3/2
± 2

3 )
n−1/2

:= 1
x

B± (sx−3/2)

From Riccati recursion relations,

P0 = x, P1 = (2x)−1, Pn(x) ∝x−1−3/2(n−1), ψn(x) ∝x−1/4−3/2n

Pn+1(x) = 1
2P0(x) ( dPn

d x
−

n

∑
k= 1

Pk(x)Pn+1−k(x))

Exercise: find the coefficients   



Airy equation
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(− ℏ2 d 2

d x2 + x) ψ(x) = 0 ( ∂2

∂x2 − x
∂2

∂s2 ) 1
x

B± (sx−3/2) = 0
Borel tr.

ℬψ± (s) ∝ 1
x ( 3s

4x3/2
± 1

2 )
−1/2

2F1 ( 5
6 , 1

6 , 1
2 ; 1

2
± 3s

4x3/2 )

8B( ̂s) + 27 ̂s
dB
d ̂s

+ (9 ̂s2 − 4) d 2B
d ̂s2 = 0

Hypergeometric differential equation

B± (s) : independent solutions

̂s := sx3/2

mostly from [Kawai,Takei]

Exercise: derive this from the explicit coefficients   



Airy equation
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ℬψ+(s) ∝
u

x 2F1 ( 5
6 , 1

6 , 1
2 ; u), ℬψ−(s) ∝ u − 1

x 2F1 ( 5
6 , 1

6 , 1
2 ; 1 − u)

u

s = 2
3 x3/2

0 1

s = − 2
3 x3/2

Connection formula (Stokes phenomenon):

2F1 ( 5
6 , 1

6 , 1
2 ; u + iϵ) − 2F1 ( 5

6 , 1
6 , 1

2 ; u − iϵ) = i (1 + u )1/2 (u − 1)−1/2
2F1 ( 5

6 , 1
6 , 1

2 ; 1 − u), u > 1

u := 1
2 + 3s

4x3/2

ℬψ+(s) → ℬψ+(s) + iℬψ−(s)
I II

Δ 2
3 x3/2ψ+ = iψ− , Δsψ= 0

I

II

dlmf.nist.gov

ℬψ−(s) → ℬψ−(s)

http://dlmf.nist.gov


Airy equation
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x

ψ+(x) → ψ+(x) + iψ−(x)

∼e 1
ℏ

2x3/2
3 ∼e− 1

ℏ
2x3/2

3∼e 1
ℏ

2x3/2
3

xA

xB
ψ−(x) → ψ−(x)

(c+
c−)B

= (1 0
i 1) (c+

c−)A

: Mi = (1 0
i 1)BA

s
2
3 x3/2

B

− 2
3 x3/2

B

s

2
3 x3/2

A

− 2
3 x3/2

A



Airy equation
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x

ψ−(x) → ψ−(x) + iψ+(x)

∼e 1
ℏ

2 |x |3/2
3 ∼e− 1

ℏ
2 |x |3/2

3∼e 1
ℏ

2 |x |3/2
3

xC

xB
ψ+(x) → ψ+(x)

(c+
c−)C

= (1 i
0 1) (c+

c−)B

: Mo = (1 i
0 1)BC

s
2
3 x3/2

B

− 2
3 x3/2

B

s

2
3 x3/2

C

− 2
3 x3/2

C



Airy equation
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x

Mbr ≡ ( 0 − i
− i 0 )

ψ(x; ℏ) = ℏ
Peven(x; ℏ) e± 1

ℏ ∫x
x0

Peven(x;ℏ)dx

MiMoMbrMo = (1 0
0 1)

Monodromy:

Crossing the branch cut: 

Peven(x; ℏ) → − Peven(x; ℏ)Q(x) → − Q(x)

check:



Airy equation

!36

x

ψ(x)

x0

ψ(x) = c−ψ− ∼e− 2
3 x2/3

ψ(x) = c+ψ + c−ψ−

∼cos ( 2
3 |x |2/3 − π

4 )



Airy equation
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x

ψ(x)

x0

ψ(x) = c−ψ− ∼e− 2
3 x2/3

ψ(x) = c+ψ + c−ψ−

∼cos ( 2
3 |x |2/3 − π

4 )



From local to global analysis 
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• In general there are multiple turning points.

• Around each turning point we have local solutions of the form

where              are resurgent functions (x independent) and uniquely 
determined once the branches for p are chosen.

•Globally we have resurgent functions that are solutions of the  Schrödinger 
equation and depend analytically on x, constructed by gluing the cs obtained 
from different turning points  

 

c+ψ+ + c−ψ−

ψ ∼c+ψ+ + c−ψ−

c+, c−

Outlook for lecture II



From local to global analysis 
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End of Lecture I


