WKB, Eigenvalue Problems and Quantisation in QM

Gökçe Başar
University of North Carolina, Chapel Hill

Spring school on asymptotic methods and applications Isaac Newton Institute for Mathematical Sciences

March 22 \& 26, 2021

Outline

Lecture I: Basics of WKB and local analysis

Lecture II: Global analysis, Stokes automorphisms, exact quantization

Lecture III: Exact quantization, a geometric approach

References that I follow the closest:

- Delabaere Pham, Resurgent methods in semi-classical asymptotics
- Kawai, Takei, Algebraic Analysis of Singular Perturbation Theory
- Voros, Spectre de L'équation de Schrödinger et Méthode BKW

Exact WKB in a nutshell

Time independent Schrödinger equation

$$
\begin{gathered}
\left(-\frac{\hbar^{2}}{2} \frac{d^{2}}{d x^{2}}+V(x)\right) \psi(x ; \hbar)=E \psi(x ; \hbar) \\
\text { Wave-functions?, Spectrum? }
\end{gathered}
$$

$\psi(x, \hbar), E(\hbar):$ Resurgent functions of \hbar

$$
\hbar^{n}, e^{-\frac{c}{\hbar}}, \log \hbar \ldots
$$

BPS spectra of $\mathcal{N}=2$ SUSY theories [Nekrasov, Shatashvili,...] wall crossing [Gaiotto, Moore, Nietzke...], cluster algebras [Iwaki, Nakanishi], Integrable models [Dorey, Dunning, Tatteo...], ...

Riccati Equation

$$
\left(-\frac{d^{2}}{d x^{2}}+\hbar^{-2} Q(x)\right) \psi(x ; \hbar)=0, \quad Q(x):=2(V(x)-E)
$$

WKB Ansatz: $\psi(x ; \hbar):=e^{-\frac{1}{\hbar} \int_{x_{0}}^{x} P(x ; \hbar) d x}$

$$
P^{2}(x ; \hbar)-\hbar \frac{d P}{d x}=Q(x)
$$

Resurgent expansion: $\quad P(x ; \hbar) \sim P_{0}(x)+\hbar P_{1}(x)+\hbar^{2} P_{2}(x)+\ldots$

depend on E
*assume $V(x)$: polynomial, see [Koike, Schafke] for $V(x)$: rational function

Riccati Equation

$$
P(x ; \hbar) \sim \sum_{n=0}^{\infty} \hbar^{n} P_{n}(x) \quad P^{2}(x ; \hbar)-\hbar \frac{d P}{d x}=Q(x)
$$

Zeroth order solution: $\quad P_{0, \pm}(x)= \pm \sqrt{Q(x)}$

Two branches \longrightarrow independent solutions of the Schrödinger eqn.
Once the branch is chosen, the higher order terms are determined recursively
(without solving any differential equation!):

$$
\begin{gathered}
P_{1}(x)-\frac{1}{2} \frac{d}{d x} \log P_{0}(x)=0 \\
2 P_{0}(x) P_{n+1}(x)+\frac{d P_{n}}{d x}+\sum_{k=1}^{n} P_{k}(x) P_{n+1-k}(x)=0
\end{gathered}
$$

[Dunham, 1932]

Riccati Equation

We can organize the expansion as

$$
\begin{aligned}
& P_{ \pm}(x ; \hbar):= \pm P_{\text {even }}(x ; \hbar)+P_{\text {odd }}(x ; \hbar)^{*} \quad P_{\text {odd }}(x)+\frac{\hbar}{2} \frac{d}{d x} \log P_{\text {even }}(x)=0 \\
& \sqrt{Q(x)}+\hbar^{2} P_{2}(x)+\ldots \\
& \psi(x ; \hbar)=\sqrt{\frac{\hbar}{P_{\text {even }}(x ; \hbar)}} e^{ \pm \frac{1}{\hbar} \int_{x_{0}}^{x} P_{\text {even }}(x ; \hbar) d x} \sim e^{ \pm \frac{1}{\hbar} \int_{x_{0}}^{x} \sqrt{Q(x)} d x} \sum_{n}^{\infty} \psi_{n, \pm}(x) \hbar^{n+1 / 2} \\
& P_{0}(x)=\sqrt{2(V(x)-E)}, \quad P_{2}(x)=\frac{-5 V^{\prime}(x)^{2}+4(-E+V(x)) V^{\prime \prime}(x)}{32 \sqrt{2}(-E+V(x))^{5 / 2}}, \ldots
\end{aligned}
$$

*: the even/odd label here agrees with Delabaere/Pham but is opposite of Takei.
Note: From now on I will drop the "even" subscript from P

WKB and resurgence

$$
\psi(x ; \hbar)=\sqrt{\frac{\hbar}{P_{\text {even }}(x ; \hbar)}} e^{ \pm \frac{1}{\hbar} \int_{x_{0}}^{x} P_{\text {even }}(x ; \hbar) d x} \sim e^{ \pm \frac{1}{\hbar} \int_{x_{0}}^{x} \sqrt{Q(x)} d x} \sum_{n}^{\infty} \psi_{n, \pm}(x) \hbar^{n+1 / 2}
$$

- Each $\psi_{n, \pm}(x)$ is holomorphic near $U=\{x \in \mathbb{C} \mid Q(x) \neq 0$ and $Q(x)=$ holomorphic $\}$
- For any $K \subset U \quad \exists A_{K}, C_{K}$ s.t. $\left|\psi_{n, \pm}\right|<A_{K} C_{k}^{n} n!, \quad \forall x \in K$
[Kawai, Takei]
- ψ : resurgent asymptotic series, whose coefficients depend on x and E.
- It is Borel summable in the absence of Stokes phenomenon
- Exact WKB : (i) Patching local WKB expansions in different Stokes regions to construct and analytic function of x.
(ii) exact quantization condition $f(E)=0$: determines E as a resurgent function

Classical Mechanics

e.g.: anharmonic oscillator

$$
V(x)=\frac{1}{8}\left(x^{2}-1\right)^{2}
$$

Turning points

$$
Q(x)=2(V(x)-E)=0
$$

0 th order Riccati: Hamilton-Jacobi * $\quad P^{2}(x ; \hbar)-\hbar \frac{d P}{d x}=Q(x)$
$-\frac{1}{2} p^{2}+V(x)=-\frac{1}{2}\left(\frac{d S_{0}}{d x}\right)^{2}+V(x)=E$
Classical action $S_{0}(x)=\int_{x_{i}}^{x} P_{0}(x) d x$

[^0]
Classical Mechanics

e.g.: anharmonic oscillator

$$
V(x)=\frac{1}{8}\left(x^{2}-1\right)^{2}
$$

Turning points

$$
Q(x)=2(V(x)-E)=0
$$

$$
\begin{aligned}
& S_{0}(E)=2 \int_{x_{1}}^{x_{2}} P_{0}(x) d x=-2 i \int_{x_{1}}^{x_{2}} \sqrt{2(E-V(x))} d x \\
& \omega_{0}(E)=\frac{d \mathcal{S}_{0}(E)}{d E}=-2 i \int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{2(E-V(x))}} d x=2 \pi i \times \text { (Classical period) }
\end{aligned}
$$

Classical Mechanics

Spectral curve: $\Sigma=\left\{(p, x) \in \mathbb{C} \mid p^{2}-Q(x)=0\right\}$: complex hyper-elliptic curve e.g.: anharmonic oscillator $\quad p^{2}-V(x)-E:=p^{2}-\prod_{i=1}^{4}\left(x-x_{i}(E)\right)=0 \quad g=1$ elliptic curve
 parameter

Classical action

Classical Mechanics

Local analysis: Turning points and Stokes lines

Near a turning point

$$
Q(x) \approx\left(x-x_{*}\right)^{\nu}, \quad P_{0}(x) \approx\left(x-x_{*}\right)^{\nu / 2}, \quad S_{0}(x) \approx\left(x-x_{*}\right)^{\nu / 2+1}
$$

$v=1$: simple turning point, $v=2$: double turning point etc \ldots

Steepest descent and Stokes lines

$$
x:=x_{R}+i x_{I} \quad \frac{1}{\hbar} S_{0}(x):=f_{R}(x)+i f_{I}(x)
$$

- Consider the curves, $x(\tau)$, parameterized by τ and satisfy

$$
\frac{d x}{d \tau}=\frac{\overline{\partial f(x(\tau))}}{\partial x}
$$

$\Rightarrow \frac{d f_{R}}{d \tau}=\left|\frac{\partial f}{\partial x}\right|^{2}>0, \quad \frac{d f_{I}}{d \tau}=0$

- $\operatorname{Re}\left[\frac{1}{\hbar} S_{0}(x)\right]$ increases fastest
- $e^{-\frac{1}{\hbar} S_{0}(x)}$ decreases fastest
"steepest ascent","Lefschetz thimbles", "fading lines" [DDP] ,
exercise: show that $x(\tau)$ satisfy a gradient flow equation for $\mathrm{S}_{0, \mathrm{R}}$ and a Hamiltonian equation where $\mathrm{S}_{0, \mathrm{I}}$ is the Hamiltonian and $\left(x_{\mathrm{R}}, x_{\mathrm{I}}\right)$ is the canonical pair

Steepest descent and Stokes lines

recall $\frac{\partial S_{0}}{\partial x}=P_{0}(x) \quad$ Turning points: fixed points of flow

- Around a simple turning point $\quad P_{0}(x)=\sqrt{x}, \quad S_{0}(x)=2 / 3 x^{3 / 2}$

Steepest descent and Stokes lines

recall $\frac{\partial S_{0}}{\partial x}=P_{0}(x) \quad$ Turning points: fixed points of flow

- Around a simple turning point $\quad P_{0}(x)=\sqrt{x}, \quad S_{0}(x)=2 / 3 x^{3 / 2}$

Steepest descent and Stokes lines

recall $\frac{\partial S_{0}}{\partial x}=P_{0}(x) \quad$ Turning points: fixed points of flow

- Around a simple turning point $\quad P_{0}(x)=\sqrt{x}, \quad S_{0}(x)=2 / 3 x^{3 / 2}$

Steepest descent and Stokes lines

Stokes line $\operatorname{Im}\left[\hbar^{-1} S_{0}(x)\right]=0$
$\Leftrightarrow \quad$ Steepest descent curves emanating

Steepest descent and Stokes lines

Stokes lines move with E

Steepest descent and Stokes lines

Stokes lines move with E

Steepest descent and Stokes lines

Stokes Lines move with E |,

Steepest descent and Stokes lines

Steepest descent and Stokes lines

Borel summation

$$
\begin{aligned}
& f(\hbar) \sim e^{-\frac{S_{n}}{\hbar}} \sum_{n=0}^{\infty} c_{n} \hbar^{n} \quad \mathscr{B} f(s)=\sum_{n=0}^{\infty} \frac{c_{n}}{\Gamma(n)}\left(s-S_{*}\right)^{n-1} \\
& \mathcal{S}_{\theta}[\mathscr{B} f](\hbar)=\int_{S_{*}}^{e^{i \theta} \infty} d s e^{-\frac{s}{\hbar} \mathscr{B} f(s) \quad \theta:=\arg \hbar}
\end{aligned}
$$

- f is Borel summable if there are no singularities along the integration contour

Note: from now on I will simply use $\mathcal{S}_{\theta} \psi($ or $\mathcal{S} \psi$) to denote Borel summation

Borel summation

- f is not Borel summable if there are singularities along the integration contour
- This might happen for certain values of θ or when the location of the singularities S_{*}, Q_{*} depend on some other parameters in the problem (moving singularities). In the WKB problem both

- We can slightly change these parameters to move the singularity out of the way: Lateral Borel summation

Lateral Borel summations

Stokes phenomenon:

$$
\mathcal{S}_{+} f(\hbar)-\mathcal{S}_{-} f(\hbar)=\int_{\delta \mathscr{C}} d s e^{-\frac{s}{\hbar}} \mathscr{B} f(s):=i e^{-\frac{1}{\hbar} Q_{*}} \mathcal{S}_{-} f_{Q}(\hbar)
$$

Alien derivative: $\Delta_{Q} f=i q_{Q}$ pointed alien derivative: $\dot{\Delta}_{Q_{*}}:=e^{-\frac{1}{\hbar} Q_{*}} \Delta_{Q_{*}}$

Stokes automorphism: $\quad \mathfrak{S}=\mathcal{S}_{+} \circ \mathcal{S}_{-}^{-}=e^{\dot{\Delta}_{Q_{*}}}$
generalize to multiple singularities see e.g. [Aniceto, Basar, Schiappa,
A Primer on Resurgent Transseries and Their Asymptotics]

Borel summation for WKB

$$
\begin{gathered}
\psi(x, \hbar)=c_{+} \psi_{+}(x ; \hbar)+c_{-} \psi_{-}(x ; \hbar) \\
\psi_{ \pm}(x ; \hbar) \sim e^{ \pm \frac{1}{\hbar} S_{0}(x)} \sum_{n}^{\infty} \psi_{n, \pm}(x) \hbar^{n+1 / 2} \quad \delta_{\theta}\left[\mathscr{B} \psi_{ \pm}\right](\hbar)=\int_{ \pm S_{0}(x)}^{e^{i \theta} \infty} d s e^{-\frac{s}{\hbar}} \mathscr{B}[\psi(x)](s)
\end{gathered}
$$

- Moving singularities: positions depend on x, E
- Let's assume E is generic (all turning points are simple)
$\psi(x ; \hbar)$ is Borel summable as long as

$$
\operatorname{Im}\left[\hbar^{-1} S_{0}(x)\right] \neq 0
$$

Contour for $\delta \psi_{+}$

Borel summation

$$
\psi_{ \pm}(x ; \hbar) \sim e^{ \pm \frac{1}{\hbar} S_{0}(x)} \sum_{n}^{\infty} \psi_{n, \pm}(x) \hbar^{n+1 / 2} \quad \mathcal{\delta}_{\theta} \psi_{ \pm}(\hbar)=\int_{ \pm \delta_{0}(x)}^{e^{i \theta} \infty} d s e^{-\frac{s}{\hbar}} \mathscr{B}[\psi(x)](s)
$$

- Moving singularities: positions depend on x, E
- Let's assume E is generic (all turning points are simple)

- This happens when two turning points are by a Stokes line ("degenerate Stokes line")

Borel plane: crossing the Stokes line

$$
\psi_{ \pm}(x ; \hbar) \sim e^{ \pm \frac{1}{\hbar} S_{0}(x)} \sum_{n}^{\infty} \psi_{n, \pm}(x) \hbar^{n+1 / 2} \quad \mathcal{\delta}_{\theta} \psi_{ \pm}(\hbar)=\int_{ \pm S_{0}(x)}^{e^{i \theta} \infty} d s e^{-\frac{s}{\hbar}} \mathscr{B}[\psi(x)](s)
$$

- Assume $\theta=0, \quad \hbar>0, \quad \operatorname{Re} S_{0}(x)>0 \rightarrow \psi_{+}$: exp. large, ψ_{-}: exp. small

Strategy: 1) Analyze the Stokes phenomena around each turning point to construct locally 2) Patch the local solutions to construct the global wave-function.

Stokes automorphisms, local analysis

- Let's analyze the Stokes phenomena near a turning point

$$
2(V(x)-E) \approx c\left(x-x_{*}\right)
$$

- shift, rescale x such that the turning point is at $x=0$

$$
\left(-\hbar^{2} \frac{d^{2}}{d x^{2}}+x\right) \psi(x)=0 \quad \text { Airy equation }
$$

$$
\begin{aligned}
& \text { classical action: } S_{0}(x)=\int_{0}^{x} \sqrt{x^{\prime}} d x^{\prime}=\frac{2}{3} x^{3 / 2} \\
& \text { Resurgent expansion: } \psi_{ \pm}(x)=e^{ \pm \hbar \frac{2}{3} x^{3 / 2}} \sum_{n=0}^{\infty} \psi_{n \pm}(x) \hbar^{n+\frac{1}{2}} \\
& \psi=c_{+} \psi_{+}+c_{-} \psi_{-}
\end{aligned}
$$

Airy equation

From Riccati recursion relations, $\quad P_{n+1}(x)=\frac{1}{2 P_{0}(x)}\left(\frac{d P_{n}}{d x}-\sum_{k=1}^{n} P_{k}(x) P_{n+1-k}(x)\right)$

$$
P_{0}=\sqrt{x}, P_{1}=(2 x)^{-1}, \quad P_{n}(x) \propto x^{-1-3 / 2(n-1)}, \psi_{n}(x) \propto x^{-1 / 4-3 / 2 n}
$$

Exercise: find the coefficients

Borel transform

$$
\mathscr{B} \psi_{ \pm}(s)=\frac{1}{x} \sum_{n=0}^{\infty} \frac{c_{n \pm}}{\Gamma(n+1 / 2)}\left(\frac{s}{x^{3 / 2}} \pm \frac{2}{3}\right)^{n-1 / 2}:=\frac{1}{x} B_{ \pm}\left(s x^{-3 / 2}\right)
$$

Airy equation

mostly from [Kawai,Takei]

$$
\begin{gathered}
\left(-\hbar^{2} \frac{d^{2}}{d x^{2}}+x\right) \psi(x)=0 \quad\left(\frac{\partial^{2}}{\partial x^{2}}-x \frac{\partial^{2}}{\partial s^{2}}\right) \frac{1}{x} B_{ \pm}\left(s x^{-3 / 2}\right)=0 \\
8 B(\hat{s})+27 \hat{s} \frac{d B}{d \hat{s}}+\left(9 \hat{s}^{2}-4\right) \frac{d^{2} B}{d \hat{s}^{2}}=0 \quad \hat{s}:=s x^{3 / 2} \\
\text { Hypergeometric differential equation } \\
B_{ \pm}(s) \text { : independent solutions } \\
\mathscr{B} \psi_{ \pm}(s) \propto \frac{1}{x}\left(\frac{3 s}{4 x^{3 / 2}} \pm \frac{1}{2}\right)^{-1 / 2}{ }_{2} F_{1}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2} ; \frac{1}{2} \pm \frac{3 s}{4 x^{3 / 2}}\right)
\end{gathered}
$$

Exercise: derive this from the explicit coefficients

Airy equation

$\mathscr{B} \psi_{+}(s) \propto \frac{\sqrt{u}}{x}{ }_{2} F_{1}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2} ; u\right), \quad \mathscr{B} \psi_{-}(s) \propto \frac{\sqrt{u-1}}{x}{ }_{2} F_{1}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2} ; 1-u\right) \quad u:=\frac{1}{2}+\frac{3 s}{4 x^{3 / 2}}$
dlmf.nist.gov
Chapter 15 Hypergeometric Function
Connection formula (Stokes phenomenon):

$$
\begin{aligned}
{ }_{2} F_{1}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2} ; u+i \epsilon\right) & -{ }_{2} F_{1}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2} ; u-i \epsilon\right)=i(1+u)^{1 / 2}(u-1)^{-1 / 2}{ }_{2} F_{1}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2} ; 1-u\right), u>1 \\
I & \longrightarrow I I \\
\mathscr{B} \psi_{+}(s) & \rightarrow \mathscr{B} \psi_{+}(s)+i \mathscr{B} \psi_{-}(s) \\
\mathscr{B} \psi_{-}(s) & \rightarrow \mathscr{B} \psi_{-}(s) \\
\Delta_{\frac{2}{3} x / 2} \psi_{+} & =i \psi_{-}, \quad \Delta_{s} \psi_{=} 0 \quad
\end{aligned}
$$

Airy equation

$$
-\frac{2}{3} x_{A}^{3 / 2} \bullet \xrightarrow{3} x_{A}^{3 / 2} \not \longrightarrow \sim \sim u \sim \sim \sim ~ L ~
$$

$$
\begin{gathered}
\psi_{-}(x) \rightarrow \psi_{-}(x) \\
\binom{c_{+}}{c_{-}}_{B}=\left(\begin{array}{ll}
1 & 0 \\
i & 1
\end{array}\right)\binom{c_{+}}{c_{-}}_{A}
\end{gathered}
$$

$$
A\left\{B: M_{i}=\left(\begin{array}{ll}
1 & 0 \\
i & 1
\end{array}\right)\right.
$$

Airy equation

$$
\psi_{+}(x) \rightarrow \psi_{+}(x)
$$

$$
\binom{c_{+}}{c_{-}}_{C}=\left(\begin{array}{ll}
1 & i \\
0 & 1
\end{array}\right)\binom{c_{+}}{c_{-}}_{B}
$$

$$
C\left\{\begin{array}{l}
B \\
B
\end{array} M_{o}\left(\begin{array}{ll}
1 & i \\
0 & 1
\end{array}\right)\right.
$$

Airy equation

$\psi(x ; \hbar)=\sqrt{\frac{\hbar}{P_{\text {even }}(x ; \hbar)}} e^{ \pm \frac{1}{\hbar} \int_{x_{0}}^{x} P_{\text {even }}(x ; \hbar) d x}$
Crossing the branch cut:

$$
\sqrt{Q(x)} \rightarrow-\sqrt{Q(x)} \Rightarrow P_{\text {even }}(x ; \hbar) \rightarrow-P_{\text {even }}(x ; \hbar)
$$

$$
\text { wurmu~ } M_{b r} \equiv\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)
$$

Monodromy:

$$
\text { check: } \quad M_{i} M_{o} M_{b r} M_{o}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Airy equation

Airy equation

From local to global analysis

Outlook for lecture II

- In general there are multiple turning points.
- Around each turning point we have local solutions of the form

$$
c_{+} \psi_{+}+c_{-} \psi_{-}
$$

where c_{+}, c_{-}are resurgent functions (x independent) and uniquely determined once the branches for p are chosen.

- Globally we have resurgent functions that are solutions of the Schrödinger equation and depend analytically on x, constructed by gluing the cs obtained from different turning points

$$
\psi \sim c_{+} \psi_{+}+c_{-} \psi_{-}
$$

From local to global analysis

End of Lecture I

[^0]: * note that the "momentum", p , differs from the physics convention by a factor of i

