A scaling relation between pA and AA collisions

Gökçe Başar

Maryland Center for Fundamental Physics University of Maryland, College Park

January 26, 2015, WWND 2015, Keystone, CO

GB, D.Teaney, arXiv:1312.6770, Phys. Rev. C. 90, 014905

Motivation

- Recent measurements of the two particle correlation function at the LHC and RHIC revealed a striking similarity between high multiplicity proton-nucleus (pA) and nucleus-nucleus (AA) collisions
- Same physics?? Collective flow in pA ?? Hydro in pA?? [Bozek et.al., Shuryak et. al., Kozlov et. al. , ...]
- There are also some quantitative differences in the measurements

Idea: Come up with a framework that accounts for the similarities and the differences.

$$
\Rightarrow \text { "Conformal dynamics" }
$$

Collective flow in nucleus-nucleus (AA) collisions

Flow in AA

- Key measurement: transverse momentum anisotropy

$$
v_{2} \equiv \frac{\left\langle p_{x}^{2}-p_{y}^{2}\right\rangle}{\left\langle p_{x}^{2}+p_{y}^{2}\right\rangle}
$$

- Interpretation:
- system behaves as a fluid with low viscosity
- different pressure gradients in x and $y \Rightarrow$ anisotropy in p_{T}
- average eccentricity $\epsilon_{2} \equiv \frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle x^{2}+y^{2}\right\rangle} \Rightarrow v_{2}$
(linear response : " $v_{2}=k \epsilon_{2}{ }^{\prime}$)

Flow in AA

- Key measurement: transverse momentum anisotropy

$$
\frac{d N}{d^{2} p_{T}}=\frac{d N}{p_{T} d p_{T}} \sum_{n=1}^{\infty}\left(1+2 v_{n} \cos (n \phi)\right)
$$

- Interpretation:
- system behaves as a fluid with low viscosity
- different pressure gradients in x and $y \Rightarrow$ anisotropy in p_{T}
- average eccentricity $\epsilon_{2} \equiv \frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle x^{2}+y^{2}\right\rangle} \Rightarrow v_{2}$
(linear response : " $v_{2}=k \epsilon_{2}{ }^{\prime}$)

Flow in AA

- Key measurement: transverse momentum anisotropy

- Interpretation:
- system behaves as a fluid with low viscosity
- different pressure gradients in x and $y \Rightarrow$ anisotropy in p_{T}
- average eccentricity $\epsilon_{2} \equiv \frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle x^{2}+y^{2}\right\rangle} \Rightarrow v_{2}$
(linear response : " $v_{2}=k \epsilon_{2}{ }^{\prime}$)

Flow in AA

$$
\frac{d N}{d \phi} \propto 1+2 v_{2} \cos \left(2 \phi-2 \Psi_{2}\right)+2 v_{3} \cos \left(3 \phi-3 \Psi_{3}\right)+\ldots
$$

- The actual measurement: two particle correlation fnc.

$$
\begin{aligned}
C(\Delta \phi) & \propto\left\langle\frac{d N}{d \phi} \frac{d N}{d(\phi+\Delta \phi)}\right\rangle_{\Psi_{2}, \Psi_{3}, \ldots} \\
& \propto 1+2\left\langle v_{2}^{2}\right\rangle \cos (2 \Delta \phi)+2\left\langle v_{3}^{2}\right\rangle \cos (3 \Delta \phi)+\ldots
\end{aligned}
$$

notation: $v_{2}\{2\} \equiv \sqrt{\left\langle v_{2}^{2}\right\rangle}, \quad v_{3}\{2\} \equiv \sqrt{\left\langle v_{3}^{2}\right\rangle}, \quad \ldots$

Flow in AA

A typical measurement:

[ATLAS, PRC 86 014907]
\Rightarrow extract $\left\langle v_{2}^{2}\right\rangle,\left\langle v_{3}^{2}\right\rangle$ from a Fourier fit

Flow in nucleus-nucleus (AA) collisions

The triumph of linear response:

[Niemi et. al. PRC87 054901]

- To a good approximation:

$$
v_{2}\{2\}=k_{2} \sqrt{\left\langle\epsilon_{2}^{2}\right\rangle}, \quad v_{3}\{2\}=k_{3} \sqrt{\left\langle\epsilon_{3}^{2}\right\rangle}
$$

The recent proton-nucleus (pA) results

The recent pA results

A typical event (low multiplicity)

[data from CMS, slides from G. Roland, RBRC workshop Apr. 15-17, 2013, also PLB 724 213]

The recent pA results

A typical event (higher multiplicity)

The recent pA results

A somewhat rare event

The recent pA results

A very rare event (high multiplicity)

(b) CMS pPb $\sqrt{\mathrm{s}_{\mathrm{NN}}}=\mathbf{5 . 0 2} \mathbf{T e V}, 220 \leq \mathrm{N}_{\text {trk }}^{\text {offline }}<\mathbf{2 6 0}$

The recent pA results

Compare pA and AA at the same multiplicity

The recent pA results

$$
v_{2} \text { and } v_{3}
$$

The recent pA results

Transverse momentum dependence of v_{2} and v_{3}

$$
|\Delta \eta|>2,0.3<p_{T}<3 G e V, \mathrm{PbPb}: 2.76 \mathrm{TeV}, \mathrm{pPb}: 5.02 \mathrm{TeV}
$$

[CMS, PLB 724 213]

"Conformal dynamics" (as an elliptical cow approximation)

- Initial state: $N_{\text {clust }}$ independently distributed clusters such that the multiplicity $N \propto N_{\text {clust }}$
- "Conformal dynamics": The density of clusters sets a momentum scale: only scale other than the system size L

$$
\tau_{R} \sim l_{m f p} \sim \frac{1}{T_{i}}
$$

\Rightarrow Universal Knudsen numbers at fixed multiplicity

$$
\frac{l_{m f p}}{L} \propto \frac{1}{T_{i} L}=f\left(\frac{d N}{d y}\right)
$$

\Rightarrow The pA system is smaller but hotter

- Flow emerges as a collective response to the geometry:

$$
v_{2,3}=\underbrace{k_{2,3}\left(l_{m f p} / L\right)}_{\text {response coefficient }} \times \underbrace{\epsilon_{2,3}}_{\text {geometry }}
$$

Linear response + conformal dynamics:

$$
v_{2}=k_{2}(d N / d y) \epsilon_{2} \quad v_{3}=k_{3}(d N / d y) \epsilon_{3}
$$

How different are the geometries?

Independent cluster model [Bhalero, Ollitrault]

- Distribution of clusters:

$$
n(\boldsymbol{x})=\bar{n}(\boldsymbol{x})+\delta n(\boldsymbol{x}) \quad, \quad\langle\delta n(\boldsymbol{x}) \delta n(\boldsymbol{y})\rangle=\bar{n}(\boldsymbol{x}) \delta^{(2)}(\boldsymbol{x}-\boldsymbol{y})
$$

- Flow is sourced both by
- average geometry $\bar{n}(\boldsymbol{x})$
- fluctuations $\delta n(\boldsymbol{x})$

figure: Bhalerao, Ollitrault, nucl-th/0607009
- $\epsilon_{2} \rightarrow v_{2}$: driven by average geometry and fluctuations (AA) fluctuations (pA)
- $\epsilon_{3} \rightarrow v_{3}$: driven by fluctuations (AA and pA)

Eccentricity and elliptic flow

- Linear response: $v_{2}=k_{2} \sqrt{\left\langle\epsilon_{2}^{2}\right\rangle}$
- Conformal scaling: $k_{2, p A}=k_{2, A A} \equiv k_{2}(d N / d y)$
- Eccentricity in non-central AA

$$
\left(\epsilon_{2}\{2\}\right)_{A A}^{2}=\epsilon_{s}^{2}+\left\langle\delta \epsilon_{2}^{2}\right\rangle
$$

- Eccentricity in pA:

$$
\begin{aligned}
\left(\epsilon_{2}\{2\}\right)_{p A}^{2} & =\left\langle\delta \epsilon_{2}^{2}\right\rangle \\
\left\langle\delta \epsilon_{2}^{2}\right\rangle & =\frac{\left\langle r^{4}\right\rangle}{N_{\text {clust }}\left\langle r^{2}\right\rangle^{2}}
\end{aligned}
$$

Eccentricity and elliptic flow

- In order to compare the elliptic flow in pPb and PbPb justly one should "remove" the overall geometry from AA and isolate the fluctuation driven part:

$$
\Rightarrow\left(v_{2}\{2\}\right)_{\mathrm{PbPb}, \mathrm{rscl}} \equiv \sqrt{\frac{\left\langle\delta \epsilon_{2}^{2}\right\rangle}{\left(\epsilon_{2}\{2\}\right)_{P b P b}^{2}}}\left(v_{2}\{2\}\right)_{\mathrm{PbPb}}
$$

- Conformal dynamics suggest that $\left(v_{2}\{2\}\right)_{\mathrm{PbPb}, \mathrm{rscl}}=\left(v_{2}\{2\}\right)_{\mathrm{pPb}}$ at the same multiplicity

Eccentricity and elliptic flow

- The scaling factor $\sqrt{\frac{\left\langle\delta \epsilon_{2}^{2}\right\rangle}{\left(\epsilon_{2}\{2\}\right)_{P b P b}^{2}}}$ is a nontrivial function of multiplicity and is calculated by Glauber model (not a fit!).
- No fine tuning!

Eccentricity and elliptic flow

- Don't know the cluster distribution for pA. Does it matter??

Eccentricity and elliptic flow

- Don't know the cluster distribution for pA.

Does it matter?? NO!

Eccentricity and elliptic flow

- Don't know the cluster distribution for pA.

Does it matter?? NO!

- Two very different distributions: $\sqrt{\frac{\left\langle\delta \epsilon_{2}^{2}\right\rangle_{\text {hard-sphere }}}{\left\langle\delta \epsilon_{2}^{2}\right\rangle_{\text {Gaussian }}}} \approx 0.85$
- Gaussian seems plausible. Compare with nuclear geometry

Triangular flow

- Linear response: $v_{3}=k_{3} \sqrt{\left\langle\epsilon_{3}^{2}\right\rangle}$
- Conformal scaling: $\left(v_{3}\{2\}\right)_{p A}=k_{3} \sqrt{\left\langle\delta \epsilon_{3}^{2}\right\rangle_{p A}} \approx\left(v_{3}\{2\}\right)_{A A}=k_{3} \sqrt{\left\langle\delta \epsilon_{3}^{2}\right\rangle_{A A}}$

$$
\left\langle\delta \epsilon_{3}^{2}\right\rangle=\frac{\left\langle r^{6}\right\rangle}{N_{\text {clust }}\left\langle r^{2}\right\rangle^{3}}
$$

- Compare $\left\langle\delta \epsilon_{3}^{2}\right\rangle_{p A}$ with that of nuclear geometry

Triangular flow

Expect $v_{3} \mathrm{~S}$ to be the same.

Triangular flow

Expect $v_{3} \mathrm{~S}$ to be the same.

Transverse momentum dependence of the flow

- Scaling argument (dictated by "conformal dynamics"):

$$
v_{2}\left(p_{T}\right)=\underbrace{\xi_{2}}_{\text {response coef. }} \times \underbrace{\epsilon_{2}}_{\text {geometry }} \times \underbrace{f_{2}\left(\frac{p_{T}}{\left\langle p_{T}\right\rangle}\right)}_{\text {universal function at fixed } \mathrm{dN} / \mathrm{dy}}
$$

- Input: $\frac{\left\langle p_{T}\right\rangle_{\mathrm{pPb}}}{\left\langle p_{T}\right\rangle_{\mathrm{PbPb}}} \simeq 1.25$ (ALICE, arXiv:1307.1094)
- Expect:
- $\frac{L_{P b P b}}{L_{p P b}}=\frac{T_{i p P b}}{T_{i} P b P b} \simeq 1.25$ (pA is smaller and hotter)
- $\left[v_{2}\{2\}\left(p_{T}\right)\right]_{p P b}=\left[v_{2}\{2\}\left(\frac{p_{T}}{\kappa}\right)\right]_{P b P b, \mathrm{rscl}}$

Scaling of $v_{2}\left(p_{T}\right)$

Notice the slopes at small p_{T} !

Scaling of $v_{3}\left(p_{T}\right)$

Notice the slopes at small p_{T} !

- ATLAS recently adopted and extended our analysis recoil subtraction \Rightarrow remarkable agreement even at larger p_{T} !

[ATLAS, PRC 90, 044906]

HBT radius

- The recent ALICE measurement reveals that $\frac{R_{P b P b}}{R_{p P b}} \simeq 1.4$ at the highest multiplicity measured (ALICE, arXiv:1404.1194)

- Compare with the conformal scaling result $\frac{L_{A A}}{L_{p A}} \simeq 1.25$

Conclusions

- The similarities as well as the differences between the high multiplicity pA and AA can be explained in a quantitative fashion by a simple conformal scaling framework.
- Universal Knudsen number $\left(l_{m f p} / L\right)$ at fixed multiplicity (pA is smaller but hotter).
- No need to fine tune parameters.
- It seems phenomenologically reasonable to conclude that the flow in pA and AA stem from the same physics.
- Not necessarily hydrodynamics, viscous corrections can be large.

Flow in AA

- eg. saturation inspired model (early times):

[fig: L. McLerran]
- Cluster density \leftrightarrow saturation momentum: $Q_{s}^{2}=\frac{N_{c l u s t}}{\pi L^{2}}$
- Mean free path, relaxation time (at early times):
$\tau_{R} \sim \frac{l_{m f p}}{L} \propto \frac{1}{Q_{s} L}=\frac{1}{\sqrt{d N / d y}}$
- eg. Bjorken expansion (later times):
- For flow a more relevant scale is $\tau \sim L$
- Viscous corrections, etc: $\frac{l_{m f_{p}}}{L} \propto \frac{1}{T(\tau) L} \propto \frac{1}{(d N / d y)^{1 / 3}}$
- Consistent with more complicated hydro models

Jet energy loss heuristics (à la BDMPS)

- Different scales are involved:
- Formation length, $l_{\text {form }} \propto \frac{\omega}{k_{\perp}^{2}}$
- Mean free path, $l_{m f p}$
- System size L
- Transverse momentum is accumulated by random walk, $\hat{q} \equiv d\left\langle k_{\perp}^{2}\right\rangle / d t$
- Depending ω of radiated gluon, spectrum is different
- $\omega \frac{\mathrm{d} N_{g}}{\mathrm{~d} \omega \mathrm{~d} z} \sim \frac{\alpha_{\mathrm{s}}}{\ell_{\mathrm{mf}}} \quad\left(\omega<\hat{q} \ell_{\mathrm{mfp}}^{2}\right) \quad$ (Bethe-Heitler)
- $\omega \frac{\mathrm{d} N_{g}}{\mathrm{~d} \omega \mathrm{~d} z} \sim \alpha_{\mathrm{s}} \sqrt{\frac{\hat{q}}{\omega}} \quad\left(\hat{q} \ell_{\mathrm{mfp}}^{2}<\omega<\hat{q} L^{2}\right) \quad(\mathrm{LPM})$
- $\omega \frac{\mathrm{d}\left(\Delta N_{g}\right)}{\mathrm{d} \omega} \sim \alpha_{\mathrm{s}} \frac{\left(\hat{q} L^{2}\right)^{2}}{\omega^{2}} \quad\left(\omega>\hat{q} L^{2}\right) \quad$ ("deep LPM")

Jet energy loss heuristics for pA

- Depending on the energy, E, of the hard parton the total energy loss is:

$$
\Delta E \sim \alpha_{\mathrm{s}} \sqrt{E \hat{q}} L \quad\left(E<\hat{q} L^{2}\right) \quad, \quad \Delta E \sim \alpha_{\mathrm{s}} \hat{q} L^{2} \quad\left(E>\hat{q} L^{2}\right)
$$

- Conformal scaling: $\hat{q}_{p A}=\kappa^{3} \hat{q}_{A A}$
- Semi-qualitative predictions:
- Larger transverse momentum broadening in pA
- The transition from $\Delta E \propto L$ regime to L^{2} regime requires a larger parton energy!

