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Motivation

» Recent measurements of the two particle correlation
function at the LHC and RHIC revealed a striking
similarity between high multiplicity proton-nucleus (pA)
and nucleus-nucleus (AA) collisions

» Same physics?? Collective flow in pA ?? Hydro in pA??
[Bozek et.al., Shuryak et. al., Kozlov et. al. , ...]

» There are also some quantitative differences in the
measurements

Idea: Come up with a framework that accounts for the
similarities and the differences.

= “Conformal dynamics”
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Collective flow in nucleus-nucleus (AA) collisions
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Flow in AA

e Key measurement: transverse momentum anisotropy

y

/i (P2 — py)

- v2 2 2
(P2 +p2)

e Interpretation:

» system behaves as a fluid with low viscosity

» different pressure gradients in x and y = anisotropy in pp

i = WP=a?)
> average eccentricity es = e = U2

(linear response : “vy = k€3”)
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Flow in AA

e Key measurement: transverse momentum anisotropy

y
) dN AN &
—_— 1 4+ 2v,, cos(n
L d’pr  prdpr ;( (n9))

e Interpretation:
» system behaves as a fluid with low viscosity

» different pressure gradients in x and y = anisotropy in pp
o _ {y*—2?)

> average eccentricity es = e

(linear response : “vy = k€3”)

= V2
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Flow in AA

e Key measurement: transverse momentum anisotropy

y
,/ dN  dN
% Epr ~ prdpy (1T 202008(20) + 2u3.05(39) +...)

e Interpretation:
» system behaves as a fluid with low viscosity

» different pressure gradients in x and y = anisotropy in pp

o _ {y*—2?)
> average eccentricity es = e = U2

(linear response : “vy = k€3”)
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Flow in AA

N
(flgb x 14 2vg cos(2¢ — 2Ws) 4 2v3 cos(3¢p — 3W3) + ...

e The actual measurement: two particle correlation fnc.

dN  dN
A aN __ aN
C(A¢) <d¢ d(qb+A¢)>\p2,\If3,...

o< 1+ 2(v3) cos(2A6) + 2(v3) cos(3A¢) + . ..

notation: v2{2} = /(v3), wv3{2} =/ (v3),
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Flow in AA

A typical measurement:

[ATLAS, PRC 86 014907]

= extract (v3), (v3) from a Fourier fit
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Flow in nucleus-nucleus (AA) collisions

The triumph of linear response:

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
€.
3

[Niemi et. al. PRC87 054901]

e To a good approximation:

vo{2} = ko /(€3), w3{2} = k3y/(e3)

A scaling relation between pA and AA collisions



The recent proton-nucleus (pA) results
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The recent pA results

A typical event (low multiplicity)

CMS pPb \s =5.02 Te

1<p®<2GeVic
1<pi™* <2 GeVic
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Ntrkofﬂine

[data from CMS, slides from G. Roland, RBRC workshop Apr. 15-17, 2013, also PLB 724 213]




The recent pA results

A typical event (higher multiplicity)

CMS pPb Vs = 5.02 Te'

1<p?<2GeVic
1< p:sm <2 GeVic

v
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The recent pA results

A somewhat rare event

CMS pPb \/s = 5.02 Te

1<pl?<2GeVic
1<p™ <2GeVic
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The recent pA results

A very rare event (high multiplicity)

(b) CMS pPb |5, = 5.02 TeV, 220 < NZ'"™ < 260

1< p‘T'ig <3 GeVic

1< p:’s"‘ <3 GeVic
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The recent pA results

Compare pA and AA at the same multiplicity

(a) CMS PbPb |5, = 2.76 TeV, 220 < N3 < 260

1<pr?<3GeVic

1< p:s“” <3 GeVic

(b) CMS pPb {5, = 5.02 TeV, 220 < N3 < 260

trig
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1< p:“m <3 GeVic
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The recent pA results

vy and v3

0.14p 'blue: circies: ('\/2{2}')Pbpb' ] oo 'blue' circlé:s: (v'3{2})1'>bpb
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|An| > 2, 0.3 < pr < 3GeV, PbPb: 2.76 TeV, pPb: 5.02 TeV

[CMS, PLB 724 213]
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The recent pA results

Transverse momentum dependence of v and w3
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red triangles: (V2{2}(Pr))pen
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[CMS, PLB 724 213|
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“Conformal dynamics” (as an elliptical cow approximation)

» Initial state: N5 independently distributed clusters such
that the multiplicity NV o< Nepyst

> “Conformal dynamics”: The density of clusters sets a
momentum scale: only scale other than the system size L

TR~ lngp ~ 7

= Universal Knudsen numbers at fixed multiplicity
lng 1 dN
I~ XL = =f < dy )

= The pA system is smaller but hotter

» Flow emerges as a collective response to the geometry:
vo3 = kos(lmpp/L) X €3
—_——— ~—

response coefficient — geometry

(e.g. saturation inspired model: Nejyst = TQ%L? = ’"pr X = L)
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Linear response + conformal dynamics:

Vo — kQ(dN/dy)EQ V3 = k?g(dN/dy)Eg

How different are the geometries?
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Independent cluster model [Bhalero, Olitrault]

» Distribution of clusters:

n(@) =n(z) +on(z) . (On(@)in(y)) =n(2)s? (@ - y)

» Flow is sourced both by

» average geometry 7(x)

» fluctuations on(x)

figure: Bhalerao, Ollitrault, nucl-th/0607009

> c9 — vy: driven by average geometry and fluctuations (AA)
fluctuations (pA)

> €3 — v3: driven by fluctuations (AA and pA)
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Eccentricity and elliptic flow

» Linear response: vy = k24/(€3)

v

Conformal scaling: ko pa = ko a4 = ka2(dN/dy)

» Eccentricity in non-central AA

(e2{2})%a = € + (6¢3)

v

Eccentricity in pA:

(2{2})pa = (063)

rd
<56%> B Nchfst<>7'2>2
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Eccentricity and elliptic flow

» In order to compare the elliptic flow in pPb and PbPb
justly one should “remove” the overall geometry from AA
and isolate the fluctuation driven part:

(d¢3)

= (02{2})Pbe,rscl = m

(v2{2})PLPD

» Conformal dynamics suggest that
(v2{2})PbPbrsel = (v2{2})ppp at the same multiplicity
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Eccentricity and elliptic flow

014r " blue circles: (v2{2})popo I blue circles: (v2{2})popb, rscl
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» The scaling factor UL%Q is a nontrivial function of
2{2}) by pp

multiplicity and is calculated by Glauber model (not a fit!).

» No fine tuning!
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Eccentricity and elliptic flow

» Don’t know the cluster distribution for pA.
Does it matter??
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Eccentricity and elliptic flow

» Don’t know the cluster distribution for pA.
Does it matter?? NO!
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Eccentricity and elliptic flow

» Don’t know the cluster distribution for pA.
Does it matter?? NO!

. . . . 02 hard— r
» Two very different distributions: %w ~ 0.85
<6€2>Gaussian

» Gaussian seems plausible. Compare with nuclear geometry
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Triangular flow

» Linear response: vs = k3+/(€3)
» Conformal scaling: (v3{2})pa = k3\/(0€3)pa ~ (v3{2})aa = k3 \/(0€3) an

6
T
(63 =
Nclust<7" >
» Compare (56§>p,4 with that of nuclear geometry
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Triangular flow

Expect v3s to be the same.




Triangular flow

Expect v3s to be the same.
10—

blue circles: (v3{2})prpp

003k red triangles: (v3{2}),pp

0.02r

0.01f

0.00

050 100 150 200 250 300 350
offline
N trk

Gokge Basgar A scaling relation between pA and AA collisions 25/35



Transverse momentum dependence of the flow

» Scaling argument (dictated by “conformal dynamics”):

pPr
o= & < gox o a(gn)
response coef. geometry

universal function at fixed dN/dy

. (pT)pPp
> Input: (pT)PbPB

~ 1.25 (ALICE, arXiv:1307.1094)

» Expect:

Lpvpy _ Tipry i
> R = it~ 1.25 (pA is smaller and hotter)

> [UQ{Q}(PT)}pr = ["U?{Q} (p?T)]Pbe,rscl
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Scaling of ve(pr)
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Notice the slopes at small pp!
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Scaling of v3(pr)
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o ATLAS recently adopted and extended our analysis
recoil subtraction = remarkable agreement even at larger pr!
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HBT radius

» The recent ALICE measurement reveals that %Pi’;f: ~14
P

at the highest multiplicity measured (avicE, arxiv:1404.1194)
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» Compare with the conformal scaling result IZ% ~ 1.25
p




Conclusions

» The similarities as well as the differences between the high
multiplicity pA and AA can be explained in a quantitative
fashion by a simple conformal scaling framework.

» Universal Knudsen number (l,,7,/L) at fixed multiplicity
(pA is smaller but hotter).

» No need to fine tune parameters.

» It seems phenomenologically reasonable to conclude that
the flow in pA and AA stem from the same physics.

» Not necessarily hydrodynamics, viscous corrections can be
large.
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Flow in AA
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1 AA collisions
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e eg. saturation inspired model (early times):

[ﬁg: L. McLerran)]

» Cluster density ¢+ saturation momentum: Q2 = %

» Mean free path, relaxation time (at early times):
lmfp 1 1
o

e eg. Bjorken expansion (later times):
» For flow a more relevant scale is 7 ~ L

: : lmfp 1 1
> .
Viscous corrections, etc: =7 o L X [@Njdg)/

» Consistent with more complicated hydro models
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Jet energy loss heuristics (a la BDMPS)

» Different scales are involved:

» Formation length, lform o 15
L

» Mean free path, Iy, rp

» System size L

» Transverse momentum is accumulated by random walk,
Gg=d(k?)/dt

» Depending w of radiated gluon, spectrum is different

dN, . , .
Tods ™ T (w<qf2;) (Bethe-Heitler)

s o [T (@2, <w<L?) (LPM)

> wd(ﬁivg) ~ Qg (éLz)2 (w > qALQ) (“deep LPM”)

w

> w
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Jet energy loss heuristics for pA

» Depending on the energy, F, of the hard parton the total
energy loss is:

AE~as\/EGL (E<{L? , AE~asGl?® (E>gL?

» Conformal scaling: gpa = K3Gaa
» Semi-qualitative predictions:
» Larger transverse momentum broadening in pA

» The transition from AFE o L regime to L? regime requires a
larger parton energy!
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