Resurgence, exact WKB and quantum geometry

Gökçe Bașar

University of Maryland

July 25, 2016
Resurgence in Gauge and String Theories, Lisboa, 2016
based on:
1501.05671 with G.Dunne, 16xx.xxxx with G.Dunne, M. Ünsal
related: Monte-Carlo dynamics, Lefschetz thimbles and the sign problem
1510.03258, 1512.08764, 1604.00956, 1605.08040, 1606.02742
with A. Alexandru, P. Bedaque, G. Ridgway, N. Warrington

Many expansions in physics are asymptotic:

$$
f(\hbar) \sim \sum_{n=0}^{\infty} c_{n} \hbar^{n} \quad, \quad c_{n} \sim n!
$$

some examples: (beware! highly incomplete list)

- quartic/cubic oscillator, Mathieu, Zeeman, Stark, ...
- Euler-Heisenberg, QFT in dS/AdS background, large N, ...
- genus expansion in string theory $\left(c_{g} \sim(2 g)\right.$!) [Shenker]
- hydrodynamics [Heller,Spalinski; GB, Dunne; Aniceto, Spalinski]

Resurgence

$$
f(\hbar)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=1}^{k-1} \underbrace{c_{n, k, l} \hbar^{n}}_{\text {perturbative fluctuations }} \underbrace{\left(\exp \left[-\frac{c}{\hbar}\right]\right)^{k}}_{\text {k-instantons }} \underbrace{\left(\ln \left[\pm \frac{1}{\hbar}\right]\right)^{\prime}}_{\text {quasi-zero-modes }}
$$

resurgence: $c_{n, k, l} \mathrm{~s}$ are related:
large order terms of perturbative series

$$
\Uparrow
$$

low order terms of non-perturbative series

Punchline of this talk:

"Beyond resurgence"
 [Dunne Ünsal; GB, Dunne]

For certain Schrödinger equations (relevant for SUSY QFTs) in addition to the large order - low order relations between perturbative and non-perturbative expansions, there is a surprising low order - low order relation between them.

It can be understood in terms of the geometry of the spectral curve.

Mathieu equation [GB, Dunne; 1501.05671]

$$
-\frac{\hbar^{2}}{2} \frac{d^{2} \psi}{d z^{2}}+\cos (z) \psi=u(N, \hbar) \psi
$$

- NS limit of the $\mathcal{N}=2, S U(2)$ theory, $u \Leftrightarrow \operatorname{tr}\left\langle\Phi^{2}\right\rangle$, moduli space coord. [see talks by Hatsuda, Kashani-Poor, Russo]
- Wilson loops in $\mathcal{N}=4$ (via AdS/CFT and Pohlmeyer Reduction) [Kruczenski et. al]
- more generally, ODE $\Leftrightarrow 2 \mathrm{D}$ integrable models [Dorey, Tateo; Voros; Bazhanov, Fateev, Lukyanov, Zamolodchikov; ...]

Strong coupling expansion: $N \hbar:=\lambda \gg 1$ (

Weak coupling expansion: $\lambda \ll 1$

Trans-series

near $u \sim-1$, tightly bound states, tunneling exponentially suppressed

$$
\begin{aligned}
u(N, \hbar) \sim & -1+\hbar\left[N+\frac{1}{2}\right]-\frac{\hbar^{2}}{16}\left[\left(N+\frac{1}{2}\right)^{2}+\frac{1}{4}\right] \\
& -\frac{\hbar^{3}}{16^{2}}\left[\left(N+\frac{1}{2}\right)^{3}+\frac{3}{4}\left(N+\frac{1}{2}\right)\right]-\ldots \\
& +\underbrace{e^{-\frac{s_{\text {inst }}}{\hbar}} \sum_{n} \hbar^{n} f_{n}(N) \cos \theta}_{1-\text { instanton }}+\underbrace{e^{-\frac{2 s_{\text {inst }}}{\hbar}} \sum_{n} \hbar^{n} g_{n}(N, \theta)}_{2-\text { instanton }} \\
& +\ldots
\end{aligned}
$$

trans-monomials:
\hbar^{n} (perturbative fluctuations), $e^{\frac{-k s_{\text {inst }}}{\hbar}}$ (multi instantons), $\log (-1 / \hbar)^{\prime}$ (quasi zero modes)

Resurgence relations

large order growth of perturbative series:

$$
c_{n}(N=0) \sim \frac{n!}{2 S_{I}^{n}}\left(1-\frac{5}{2} \cdot \frac{1}{n}-\frac{13}{8} \cdot \frac{1}{n(n-1)}-\ldots\right)
$$

instanton anti-instanton fluctuations: (leading ambiguity)
$\operatorname{Im} u(0, \hbar) \sim \pi e^{-2 S_{\text {inst }} / \hbar}\left(1-\frac{5}{2} \cdot\left(\frac{\hbar}{16}\right)^{2}-\frac{13}{8} \cdot\left(\frac{\hbar}{16}\right)^{4}-\ldots\right)$

Beyond resurgence

- In addition to the large order - low order relations between perturbative and non-perturbative expansions, there is a surprising low order - low order relation between them!
- allows one to fully construct the non-perturbative fluctuations from perturbative data.
- valid everywhere in the spectrum

$$
\psi \sim e^{\frac{i}{\hbar} Q(z, u ; \hbar)} \Rightarrow Q^{\prime 2}+i \hbar Q^{\prime \prime}-2(u-V(z))=0 \quad \text { (Ricatti eqn.) }
$$

$$
Q(z) \sim \sum_{n=0}^{\infty} \hbar^{n} Q_{n}(z, u)=\int \sqrt{2(u-V)} d z+\sum_{n=1}^{\infty} \hbar^{n} Q_{n}(z, u)
$$

WKB actions: [Dunham]

$$
\begin{aligned}
a(u ; \hbar) & =\frac{1}{2 \pi} \int_{A} Q^{\prime} d z \sim \sum_{n=0}^{\infty} a_{n}(u) \hbar^{2 n} \\
a^{D}(u ; \hbar) & =\frac{1}{2 \pi} \int_{B} Q^{\prime} d z \sim \sum_{n=0}^{\infty} a_{n}^{D}(u) \hbar^{2 n}
\end{aligned}
$$

$$
\text { perturbative : } a(u ; \hbar)=\frac{\hbar}{2}(N+1 / 2) \Rightarrow u_{p t .}(N)
$$

non-perturbative (tunneling): $\Delta u=\frac{2}{\pi} \frac{\partial u_{p t .}}{\partial N} e^{-\frac{2 \pi}{\hbar} \mathcal{I} m\left[a^{D}\right]}$
$a(u)$ and $a^{D}(u)$ are related order by order in $\hbar!$

$$
\psi \sim e^{\frac{i}{\hbar} Q(z, u ; \hbar)} \Rightarrow Q^{\prime 2}+i \hbar Q^{\prime \prime}-2(u-V(z))=0 \quad \text { (Ricatti eqn.) }
$$

$$
Q(z) \sim \sum_{n=0}^{\infty} \hbar^{n} Q_{n}(z, u)=\int \sqrt{2(u-V)} d z+\sum_{n=1}^{\infty} \hbar^{n} Q_{n}(z, u)
$$

WKB actions: [Dunham]

$$
\begin{aligned}
a(u ; \hbar) & =\frac{1}{2 \pi} \int_{A} Q^{\prime} d z \sim \sum_{n=0}^{\infty} a_{n}(u) \hbar^{2 n} \\
a^{D}(u ; \hbar) & =\frac{1}{2 \pi} \int_{B} Q^{\prime} d z \sim \sum_{n=0}^{\infty} a_{n}^{D}(u) \hbar^{2 n}
\end{aligned}
$$

$$
\text { perturbative : } a(u ; \hbar)=\frac{\hbar}{2}(N+1 / 2) \Rightarrow u_{p t .}(N)
$$

non-perturbative (tunneling): $\Delta u=\frac{2}{\pi} \frac{\partial u_{p t .}}{\partial N} e^{-\frac{2 \pi}{\hbar} \mathcal{I} m\left[a^{D}\right]}$
$a(u)$ and $a^{D}(u)$ are related order by order in $\hbar!\Rightarrow P=N P$

Geometry and WKB

- Set $\hbar=0$ for now.
- Classically the (complex) phase space can be identified with the moduli space of complex tori.
- $u \Leftrightarrow$ moduli space parameter

$$
\begin{gathered}
u=\frac{p^{2}}{2}+\cos z \quad \Rightarrow \quad x \equiv \cos z, \quad y=\frac{\dot{x}}{\sqrt{2}} \\
y^{2}=\left(x^{2}-1\right)(x-u) \quad \text { genus-1 elliptic curve }
\end{gathered}
$$

Geometry and WKB

WKB actions: integrals of abelian differentials over the two independent cycles of torus

$$
\begin{aligned}
& a_{0}(u)=\frac{\sqrt{2}}{2 \pi} \int_{A} \sqrt{u-V(z)} d z=\frac{\sqrt{2}}{\pi} \int_{A} \frac{u-x}{y} d x \\
& a_{0}^{D}(u)=\frac{\sqrt{2}}{2 \pi} \int_{B} \sqrt{u-V(z)} d z=\frac{\sqrt{2}}{\pi} \int_{B} \frac{u-x}{y} d x
\end{aligned}
$$

\equiv Seiberg-Witten differentials for SU(2) [Gorsky, Krichever, Marshakhov, Mironov, Morozov]

Geometry and WKB

a_{0} and a_{0}^{D} are related via Riemann bilinear identity

$$
a_{0} \frac{d a_{0}^{D}}{d u}-a_{0}^{D} \frac{d a_{0}}{d u}=\frac{i}{2} \frac{S_{\text {inst }}}{T}
$$

$T=2 \pi=$ period of the harm. oscll. at the bottom of the well

- a_{0}, a_{0}^{D} : satisfy a Picard-Fuchs equation

$$
a_{0}^{\prime \prime}(u)-\frac{1}{4\left(1-u^{2}\right)} a_{0}(u)=0
$$

- Bilinear identity \Leftrightarrow Wronskian
- alternatively: $a_{0}^{D}(u)=\tau_{0}(u) a_{0}(u)-i \frac{S_{\text {inst }}}{\omega_{0}(u)}$ where $\omega_{0}=a_{0}^{\prime}$, modular parameter: $\tau_{0}=\omega_{0}^{D} / \omega_{0}$

Geometry and WKB: Quantum corrections

$$
a(u ; \hbar) \sim \sum_{n=0}^{\infty} a_{n}(u) \hbar^{2 n} \quad, \quad a^{D}(u ; \hbar) \sim \sum_{n=0}^{\infty} a_{n}^{D}(u) \hbar^{2 n}
$$

All higher order actions are encoded in the lowest order (classical) action

$$
\begin{gathered}
a_{n}(u)=p_{n}(u) a_{0}(u)+q_{n}(u) a_{0}^{\prime}(u) \\
a_{n}^{D}(u)=p_{n}(u) a_{0}^{D}(u)+q_{n}(u) a_{0}^{D^{\prime}}(u)
\end{gathered}
$$

- p_{n}, q_{n} : rational functions that can be derived from Schrödinger eqn.

Geometry and WKB: Quantum corrections

"quantum corrections" to the bilinear identity

> [GB, Dunne]

$$
\left(a-\hbar \frac{\partial a}{\partial \hbar}\right) \frac{\partial a^{D}}{\partial u}-\left(a^{D}-\hbar \frac{\partial a^{D}}{\partial \hbar}\right) \frac{\partial a}{\partial u}=\frac{2 i}{\pi}
$$

- connects the perturbative expansion to non-perturbative fluctuations order by order
- valid everywhere in the spectrum
- SUSY inspired proof via Matone's relation [Gorsk, Milekhin]

quantum corrections to the Picard Fuchs equation:

[GB, Dunne, Ünsal, in prep]

$$
\begin{array}{r}
a^{\prime \prime}(u)+F(u) a^{\prime}(u)+G(u) a(u)=0 \\
F(u):=\sum_{n=0}^{\infty} \hbar^{n} f_{n}(u) \quad, \quad G(u):=\sum_{n=0}^{\infty} \hbar^{n} g_{n}(u)
\end{array}
$$

quantum corrections: higher order poles

$$
\begin{aligned}
& f_{0}(u)=0 \quad, \quad g_{0}=\frac{1}{8(-1+u)}-\frac{1}{8(1+u)} \\
& f_{1}(u)=-\frac{1}{96(u+1)^{2}}-\frac{1}{96(u-1)^{2}} \quad, \quad g_{1}=\frac{1}{96(u+1)^{3}}+\frac{1}{384(u+1)^{2}}+\ldots
\end{aligned}
$$

$$
P=N P
$$

perturbative expansion:

$u^{\text {pt. }}(N, \hbar) \sim-1+\hbar\left[N+\frac{1}{2}\right]-\frac{\hbar^{2}}{16}\left[\left(N+\frac{1}{2}\right)^{2}+\frac{1}{4}\right]+\ldots$

$$
\Uparrow
$$

band width (non-perturbative, 1-instanton+fluctuations) :
$\Delta u_{1 \text { inst. }}(N, \hbar)=\frac{\partial u^{p t .}}{\partial N} e^{\left.S_{\text {inst }} \int_{0}^{h} \frac{d h^{\prime}}{h^{\prime}(} \frac{\partial u^{p t .}\left(N, h^{\prime}\right)}{\partial N}-h^{\prime}+\frac{h^{\prime 2}\left(N+\frac{1}{2}\right)^{2}}{S_{\text {inst }}}\right)}$
checked up to 3 loops via explicit calculation [Escobar-Ruiz, Shuryak, Turbiner]

Strong coupling expansion: $N \hbar \gg 1$

$$
u^{\text {pert. }}(N, \hbar) \sim \frac{\hbar^{2}}{8}\left(N^{2}+\frac{1}{2\left(N^{2}-1\right)}\left(\frac{2}{\hbar}\right)^{4}+\frac{5 N^{2}+7}{32\left(N^{2}-1\right)^{3}\left(N^{2}-4\right)}\left(\frac{2}{\hbar}\right)^{8}+\ldots\right)
$$

gauge theory detour [Alday, Gaiotto, Tachikawa; Marshakov et. al.; ...]
$Z^{\text {inst. }}\left(a ; \epsilon_{1}, \epsilon_{2}\right)=\sum_{n=0}^{\infty}\left(\frac{\Lambda^{2}}{\epsilon_{1} \epsilon_{2}}\right)^{2 n} Q_{\Delta}^{-1}\left(\left[1^{n}\right],\left[1^{n}\right]\right), \quad Q_{\Delta}\left(Y, Y^{\prime}\right)=\langle\Delta| L_{r} L_{-Y^{\prime}}|\Delta\rangle$

- from AGT: $\Delta=\frac{1}{\epsilon_{1} \epsilon_{2}}\left(a^{2}-\frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{4}\right) \quad, \quad c=1-\frac{6\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{\epsilon_{1} \epsilon_{2}}$
- $\epsilon_{2} \rightarrow 0$ limit, twisted superpotential: [Nekrasov, Shatashvili]

$$
\mathcal{W}_{N S}^{\text {inst. }}\left(a ; \epsilon_{1}\right) \equiv-\frac{\epsilon_{1}}{4 \pi i} \lim _{\epsilon_{2} \rightarrow 0} \epsilon_{2} \log \left(Z^{\text {inst. }}\left(a, \epsilon_{1}, \epsilon_{2}\right)\right)
$$

- identify $\epsilon_{1}=\hbar, a=N \hbar / 2$

$$
u=\frac{i \pi}{2} \Lambda \frac{\partial \mathcal{W}_{N S}^{\text {inst. }}}{\partial \Lambda}=\frac{\hbar^{2}}{8}\left(\frac{8 \Lambda^{4}}{\left(N^{2}-1\right) \hbar^{4}}+\frac{8 \Lambda^{8}\left(5 N^{2}+7\right)}{\left(N^{2}-4\right)\left(N^{2}-1\right)^{3} \hbar^{8}}+\ldots\right)
$$

Strong coupling ($\lambda \gg 1$)
 back to QM: level splitting

- $u^{\text {pert }}(N, \hbar)$ is not the whole story
- In the limit $N, \lambda \gg 1$ there are exponentially small gaps in the spectrum
- $u^{\text {pert }}(N, \hbar)$ determines the center of the gap

gap width:

$$
\begin{aligned}
\Delta u_{N}^{\text {gap }} & \approx \frac{\hbar^{2}}{4} \frac{1}{\left(2^{N-1}(N-1)!\right)^{2}}\left(\frac{2}{\hbar}\right)^{2 N}\left[1+\mathcal{O}\left(\hbar^{-4}\right)\right] \\
& \approx \frac{N \hbar^{2}}{2 \pi}\left(\frac{e}{N \hbar}\right)^{2 N}
\end{aligned}
$$

Strong coupling: complex instantons

Is there a semi-classical interpretation of the exponentially small gaps at strong coupling, similar to the instantons for the case of exponentially small bands at weak coupling?

YES! complex instantons

- For $u>1$, the turning points are complex.
- a^{D} goes around these complex turning points.
- when $\hbar \ll 1$ and $N \gg \hbar^{-1}(u \gg 1)$ semi-classically:

$$
\Delta u_{N}^{\text {gap }} \sim \frac{2}{\pi} \frac{\partial u^{\text {pert. }}}{\partial N} e^{-\frac{2 \pi}{\hbar} \operatorname{Im} a^{D}} \sim \frac{N \hbar^{2}}{2 \pi}\left(\frac{e}{N \hbar}\right)^{2 N}
$$

Strong coupling $(\lambda \gg 1)$

A physical analogy:
Schwinger effect in monochromatic electric field $\mathcal{E} \cos (\omega t)$

- Pair production rate behaves differently for different $\omega \mathrm{s}$
- Keldysh adiabaticity parameter: $\gamma \equiv \frac{m \omega}{\mathcal{E}}$
- $\gamma \ll 1 \leftrightarrow$ constant field, $\gamma \gg 1 \leftrightarrow$ multi-photon limit
- In our analogy: $\hbar \equiv \frac{4 \omega^{2}}{\mathcal{E}} \quad, \quad N \equiv \frac{m}{\omega} \quad, \quad \lambda=2 \gamma$
$\mathrm{P}_{\mathrm{QED}}=e^{-\frac{m^{2} \pi}{\varepsilon} g(\gamma)} \sim\left\{\begin{array}{l}e^{-\pi \frac{m^{2}}{\varepsilon}} \quad, \quad \gamma \ll 1 \\ e^{-\frac{m^{2} \pi}{\varepsilon} \frac{4}{\pi \gamma} \log (4 \gamma)}=\left(\frac{\mathcal{E}}{4 m \omega}\right)^{4 m / \omega} \quad, \quad \gamma \gg 1\end{array}\right.$
- in the worldline formalism:
$\gamma \ll 1 \leftrightarrow$ real instantons, $\gamma \gg 1 \leftrightarrow$ complex instantons

Fluctuations around complex instantons

- "quantum bilinear identity" relates $u^{\text {pert. }}(N, \hbar)$ to $\Delta u_{N}^{\text {gap }}$

$$
\begin{aligned}
u(N, \hbar) \sim & \frac{\hbar^{2}}{8} \sum_{n=1}^{N-1} \frac{P_{n}(N)}{\prod_{k=1}^{n}\left(N^{2}-k^{2}\right)^{2\left\lfloor\frac{n}{k}\right\rfloor-1}}\left(\frac{4}{\hbar^{2}}\right)^{2 n} \\
& \pm \frac{1}{\left(2^{N-1}(N-1)!\right)^{2}}\left(\frac{2}{\hbar}\right)^{2 N-1} \sum_{n=1}^{N-1} \frac{R_{n}(N)}{\prod_{k=1}^{n}\left(N^{2}-k^{2}\right)^{2\left\lfloor\frac{n}{k}\right\rfloor}}\left(\frac{4}{\hbar^{2}}\right)^{2 n} \\
& +\ldots
\end{aligned}
$$

- The level splitting term (gap width) has the same structure with the leading perturbative expansion.
- $P_{n}(N), R_{n}(N)$ are related! [GB, Dunne, Ünsal, in prep]
- New results for Mathieu equation!!

How general is the P - NP connection?

Mathieu (classical, $\hbar=0$)
modular parameter: $\tau_{0}(u)=\frac{\omega_{0}^{D}(u)}{\omega_{0}(u)}=i \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{1-u}{2}\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{1+u}{2}\right)}$
τ_{0} satisfies a Schwarzian equation: $\left\{\tau_{0}, u\right\}+Q_{0}(u)=0$

$$
\left\{\tau_{0}, u\right\}:=\frac{\tau_{0}^{\prime \prime \prime}}{\tau_{0}^{\prime \prime}}-\frac{3}{2}\left(\frac{\tau_{0}^{\prime \prime}}{\tau_{0}^{\prime \prime}}\right)^{2} \quad, \quad Q_{0}(u)=\frac{1}{4(u-1)^{2}}+\frac{1}{8(u+1)}+\frac{1}{4(u+1)^{2}}-\frac{1}{8(u-1)}
$$

spectrum can be obtained by inversion ($q_{0}:=e^{i \pi \tau_{0}}$):

$$
u\left(q_{0}\right)=-1+\lambda\left(q_{0}\right)=-1+32 q_{0}-256 q_{0}^{2}+1408 q_{0}^{3}+\ldots
$$

How general is the P-NP connection?

Mathieu (quantum, $\hbar \neq 0$)

quantum correction to the Schwarzian equation:

$$
\{\tau, u\}+Q(u)=0
$$

where: $Q(u)=\sum_{n=0}^{\infty} \hbar^{2 n} \quad \underbrace{Q_{n}(u)}$
\sum poles at $u= \pm 1$
inversion \rightarrow spectrum:

$$
u(q)=-1+\lambda(q)+\sum_{n=1}^{\infty} \hbar^{2 n} f_{n}(q)
$$

How general is $P=N P$?
consider the generalization: (classical)
modular parameter: $\tau_{0}(u)=i \frac{\omega_{0}^{D}(u)}{\omega_{0}(u)}=\frac{{ }_{2} F_{1}\left(\frac{1}{M}, 1-\frac{1}{M}, 1 ; 1-u\right)}{{ }_{2} F_{1}\left(\frac{1}{M}, 1-\frac{1}{M}, 1 ; u\right)}$
Picard-Fuchs equation:

$$
a_{0}^{\prime \prime}(u)-\frac{M-1}{M^{2}} \frac{1}{u(1-u)} a_{0}(u)=0
$$

corresponding potential: $V(x)=T_{n}^{2}(x) \quad, \quad n=M /(M-2)$

$$
\begin{gathered}
n=2 \text { : double well } \\
n=3 \text { : triple well } \\
n=4: \text { quadruple well } \\
\text { etc... }
\end{gathered}
$$

How general is $P=N P$?

consider the generalization: (classical)

modular parameter: $\tau_{0}(u)=i \frac{\omega_{0}^{D}(u)}{\omega_{0}(u)}=\frac{{ }_{2} F_{1}\left(\frac{1}{M}, 1-\frac{1}{M}, 1 ; 1-u\right)}{{ }_{2} F_{1}\left(\frac{1}{M}, 1-\frac{1}{M}, 1 ; u\right)}$
Picard-Fuchs equation:

$$
a_{0}^{\prime \prime}(u)-\frac{M-1}{M^{2}} \frac{1}{u(1-u)} a_{0}(u)=0
$$

corresponding potential: $V(x)=T_{n}^{2}(x) \quad, \quad n=M /(M-2)$

$$
\begin{gathered}
n=2: \text { double well } \\
n=3 \text { : triple well } \\
n=4: \text { quadruple well } \\
\text { etc... }
\end{gathered}
$$

4 special cases: $M=2,3,4,6 \Rightarrow 4 \cos ^{2}(\pi / M)$ is an integer (Mathieu, triple well, double well, cubic oscl.)
inversion formula $u(\tau)$: Ramanujan's elliptic functions

$$
\begin{aligned}
& \text { Example } 1 \\
& \qquad \exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; x\right)}\right)=\frac{x}{16}\left(1+\frac{1}{2} x+\frac{21}{64} x^{2}+\cdots\right) . \\
& \text { Example } 2 \\
& \qquad \exp \left(-\frac{2 \pi}{\sqrt{3}} \frac{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; 1-x\right)}{\left.{ }_{2} F_{1} \frac{1}{3}, \frac{2}{3} ; 1 ; x\right)}\right)=\frac{x}{27}\left(1+\frac{5}{9} x+\cdots\right) . \\
& \text { Example } 3 \\
& \text { Example } 4 \\
& \quad \exp \left(-\sqrt{2} \pi \frac{{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ; 1-x\right)}{\left.{ }_{2} F_{1} \frac{1}{4}, \frac{3}{4} ; 1 ; x\right)}\right)=\frac{x}{64}\left(1+\frac{5}{8} x+\cdots\right) . \\
& \quad \exp \left(-2 \pi \frac{{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; 1 ; x\right)}\right)=\frac{x}{432}\left(1+\frac{13}{18} x+\cdots\right) .
\end{aligned}
$$

[Berndt, Ramanujan's notebooks vol. II]

remarks:

- appear in number theory [Borwein ${ }^{2}$, Berndt, Bhargava, Garvan, Chan, ...]
- only cases with arithmetic Hecke groups [Shen]
- related to superconformal $\mathcal{N}=2$ theories
[Minahan,Nemeschansky;Lerda et. al., ...]

4 special cases: $M=2,3,4,6 \Rightarrow 4 \cos ^{2}(\pi / M)$ is an integer (Mathieu, triple well, double well, cubic oscl.)
inversion formula $u(\tau)$: Ramanujan's elliptic functions

```
Example 1
\[
\exp \left(-\pi_{2} \frac{F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; x\right)}\right)=\frac{x}{16}\left(1+\frac{1}{2} x+\frac{21}{64} x^{2}+\cdots\right) .
\]
```

Example 2

$$
\exp \left(-\frac{2 \pi}{\sqrt{3}} \frac{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; x\right)}\right)=\frac{x}{27}\left(1+\frac{5}{9} x+\cdots\right)
$$

Example 3

$$
\exp \left(-\sqrt{2} \pi \frac{{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ; x\right)}\right)=\frac{x}{64}\left(1+\frac{5}{8} x+\cdots\right) .
$$

Example 4

$$
\exp \left(-2 \pi \frac{{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; 1 ; x\right)}\right)=\frac{x}{432}\left(1+\frac{13}{18} x+\cdots\right) .
$$

We do not know Ramanujan's intention in giving Examples 1-4.
[Berndt, Ramanujan's notebooks vol. II]

remarks:

- appear in number theory [Borwein ${ }^{2}$, Berndt, Bhargava, Garvan, Chan, ...]
- only cases with arithmetic Hecke groups [Shen]
- related to superconformal $\mathcal{N}=2$ theories
[Minahan,Nemeschansky;Lerda et. al., ...]
only these 4 cases have the same modifications upon quantization:
- quantum bilinear identity:

$$
\left(a-\hbar \frac{\partial a}{\partial \hbar}\right) \frac{\partial a^{D}}{\partial u}-\left(a^{D}-\hbar \frac{\partial a^{D}}{\partial \hbar}\right) \frac{\partial a}{\partial u}=\frac{i S_{i n s t}}{2 \pi}
$$

- Schwarzian \& Picard-Fuchs equations:

$$
\begin{aligned}
& \{\tau, u\}+Q^{(M)}(u)=0 \\
& a^{\prime \prime}(u)+F^{(M)}(u) a^{\prime}(u)+G^{(M)}(u) a(u)=0 \\
& \quad Q^{(M)}(u):=\sum_{n=0}^{\infty} \hbar^{n} Q_{n}^{(M)}(u), \text { etc... }
\end{aligned}
$$

$\hbar \neq 0 \rightarrow F_{n}^{(M)}(u), G_{n}^{(M)}(u), Q_{n}^{(M)}(u)$: sum over higher order poles at the same locations as the classical curve

examples with more complicated $P=N P$ relations:

generic genus-1: $2^{\text {nd }}$ order Picard-Fuchs eqn. for $a_{0}^{\prime}(u)$

- Lamé equation $V(z)=\mathcal{P}(z ; \mathfrak{t})$ related to $\mathcal{N}=2^{*} S U(2)$
[GB, Dunne; Kashani-Poor, Troost, ...]
- $V(z)=\cos (z)+\frac{2 m_{1} m_{2}}{\cos (z)+1}+\frac{\left(m_{1}-m_{2}\right)^{2}}{\sin ^{2}(z)}$ related to $\mathcal{N}=2, \operatorname{SU}(2), N_{f}=2$
- Double sine gordon $V(z)=\sin ^{2}(z)+\mu \sin (z)$
- Asymmetric double well $V(z)=\left(z^{2}-1\right)^{2}+\mu z$

Conclusions

- In an infinite class of QM systems in addition to the standard resurgence relations there is a low order -low order relation between perturbative and non-perturbative sectors
- Classically it is related to the topology of the spectral curve
- It is valid everywhere in the spectrum even though the series are drastically different (asymptotic vs. convergent) in different regions
- Quantization preserves this $P=N P$ relation
- 4 examples such that $P=N P$ is particularly simple (Mathieu, triple well, double well, cubic oscl.)

