Emergent noun faithfulness in novel English blends

Jennifer L. Smith, Elliott Moreton, Katya Pertsova, Rachel Broad {jlsmith|moreton|pertsova}@email.unc.edu | broadr@live.unc.edu

University of North Carolina, Chapel Hill

Overview

- English speakers show **emergent effects of noun faithfulness** in experiments where they must match novel blends to definitions manipulating noun/verb status
- Implications: (a) NFaith constraints are available even if not learned from L1 data
 (b) Emergent effects of NFaith may differ from typological patterns
 - §1 Lexical blends as a testing ground for emergent effects
 - §2 Noun faithfulness and lexical blends
 - §3–4 Experiments: Methodology and results
 - §5 Noun faithfulness as an emergent effect for English speakers
 - §6 Conclusions and implications

1. Lexical blends as a testing ground for emergent effects

- (1) **Emergent effect**: in an OT-type framework, a constraint or ranking **reveals itself**
- (2) Term originates from "*emergence of the unmarked*" (McCarthy & Prince 1994)
 - (a) A low-ranking (markedness) constraint becomes visible in a specific context
 - Reason: Higher-ranked competing constraints are not relevant there
 - (b) Example: No codas in reduplication if $M_{AX-IO} >> N_O C_{ODA} >> M_{AX-BR}$
- (3) Emergent effects of hidden or covert rankings
 - (a) Rankings with no discernable effect in L1 phonology
 - (b) Their effects emerge when speakers perform non-L1 tasks
 - (c) Theoretically significant because:

Emergent effects of covert rankings reveal phonological knowledge that **was not learned directly** from the ambient language data

- (4) Emergent **covert rankings** as in (3) have been found in:
 - (a) L2/interlanguage (e.g., Broselow, Chen, & Wang 1998; Zhang 2013; Jesney to appear)
 - (b) Lab production/perception of non-L1 structures (Davidson 2001, Berent et al. 2007; cf. Davidson 2010); loanwords (Jacobs & Gussenhoven 2000; Ito & Mester 2001)
 - (d) Language games (Moreton, Feng, & Smith 2008)
- (5) Lexical blends are a testing ground for emergent effects (Shaw 2013, Shaw et al. 2014)
 - (a) Lexical blend: (Intentional) word-formation process
 - Combines two or more source words, as in $sp(oon) + (\underline{f})or\underline{k} \rightarrow spor\underline{k}$
 - (b) Often involves truncation—loss of input material: [s p u n f ɔ ı k]
 - (c) **Emergent effects**: Do phonological factors that are **not** active in the nonblend phonology influence what source-word material is lost vs. preserved?

- 2. Noun faithfulness and lexical blends
- (6) There is *typological* evidence for **noun faithfulness** (Smith 2011)
 - (a) Noun (N) phonology can be different from verb (V) phonology
 - (b) In such cases, if one category shows special faithfulness, it is typically N
 - Special faithfulness = resistance to alternations; more contrasts
- (7) Implementation: Faithfulness constraints can be indexed to the category N
 - This makes noun faithfulness a subtype of positional faithfulness (Beckman 1999)
 - On constraints indexed to lexical sets, see also (e.g.) Ito & Mester (1999, 2001); Pater (2010)
 - (a) MaxSEG(N) Assign one * to each input segment <u>in a N</u> that has no output correspondent (= No segment deletion from N)
 - (b) MAXSTRESS(N) Assign one * to each input stress <u>in a N</u> that has no output correspondent (= No stress deletion from N)
 - \rightarrow Non-nouns always satisfy (vacuously) any constraint indexed to N
- (8) We argue (see §5) that MaxSeg(N) and MaxStress(N) are not active in English
 - This makes them relevant for testing for emergent effects in blends
- (9) Structure of experiments:
 - 1–2 NounFaith | segmental, stress preservation
 - 3–4 HeadFaith | segmental, stress preservation—comparison case (from Shaw 2013)
- 2.1 Experiments 1 and 2: Noun faithfulness
- (10) If noun faithfulness affects blend formation, then **properties of a N source word** should be **better preserved** in a blend than those of a V source word
- (11) Experiment materials: Blends that will test for effects of NounFaith
 - This is an extension of the blend experiment methodology in Shaw (2013)
 - (a) Each source-word pair can be blended in two different ways
 Exp 1—Two different segment choices: <u>plot+litigate</u> → <u>plotigate</u>, <u>plitigate</u>
 Exp 2—Two different stress choices: <u>fúdge+rejéct</u> → <u>fúdgect</u>, fudg<u>é</u>ct
 - (b) The first source word is ambiguous between N and V (second always used as V)
 plot N: 'the storyline of a book, etc.' V: 'to make secret plans'
 fudge N: 'a type of confection' V: 'to adjust dishonestly'
 - Ambiguous N/V words = homophones, differing significantly in meaning Homophones: To fudge / the fudge Not homophones: To bike / the bike

(c) **Two definitions** are provided for the blend, using the N and V meanings

plot + litigate	N+V V+V	to sue a plagiarist over the plot of a novel to sue a conspirator when they plot against you
fudge + reject	N+V V+V	to refuse to eat any fudge to refuse to fudge a calculation

(12) Prediction: If NounFaith influences blend formation, participants will match...

- (a) the output blend that is **more faithful** to the <u>first source word</u> to
- (b) the definition that uses the <u>first source word</u> as a **noun**

(13) Exp 1: Prediction for MAXSEG(N)

		Possible pairing of blend \rightarrow definition	<i>NounFaith:</i> Max S eg(N)	HeadFaith: MaxSeg(Hd)	Output stress constraints
(a)	i.	$[platigent] \rightarrow N+V$	(faithful)	*	same
(a)	ii.	$[plitigeit] \rightarrow V+V$	(vacuous)		same
 	1				
	i.	[platigeIt] → V+V	(vacuous)	*	same
(0)	ii.	$[plitigeit] \rightarrow N+V$	*!		same

(14) Exp 2: Prediction for MAXSTRESS(N)

			Possible pairing of blend \rightarrow definition	<i>NounFaith:</i> MaxStress(N)	<i>HeadFaith:</i> MaxStress(Hd)	Output stress (V prefers iamb?)
	(a)	i.	f ú dgect \rightarrow N+ \underline{V}	(faithful)	*	(*)
	(a)	ii.	fudgéct \rightarrow V+ <u>V</u>	(vacuous)		
	(h)	<i>i</i> .	fúdgect \rightarrow V+ <u>V</u>	(vacuous)	*	(*)
(1	(0)	ii.	$fudgéct \rightarrow N+\underline{V}$	*!		

2.2 Experiments 3 and 4: Comparison case—Head faithfulness

- (15) Comparison case: A (modified) replication of Shaw (2013)
 - (a) Shaw discovered emergent effects of faithfulness to *heads* in English blends
 - (b) Developed the experimental paradigm we are using
 - (c) Some differences in experiment design (see §3)

	Shaw (2013)	Our replication	
Number of items	8	9	
Subject recruitment	Networking	Mechanical Turk	
Web interface	Radio buttons	Drag-and-drop	

- (16) Reasons for including a replication of Shaw's HeadFaith experiments
 - (a) Allows us to confirm that our revised methodology is sensitive to emergent effects of positional faithfulness in blend formation by English speakers
 - (b) Allows a tentative comparison between NounFaith, HeadFaith effect size

- (17) Structure of HeadFaith materials (exact items from Shaw 2013, plus one new item each)
 - (a) Each source-word pair can be blended in two different ways
 Exp 3—Two different segment choices: <u>flamingo</u>+mongoose → <u>flamingoose</u>, <u>flam</u>ongoose
 Exp 4—Two different stress choices: <u>flóunder+sardíne</u> → <u>flóundine</u>, floundíne
 - (b) Controlled for lexical category: All source words are used as N
 - (c) **Two definitions** are provided; one is **right-headed** and one is **coordinating**

flamingo+mongoose	(coordinating) (right-headed)	a hybrid of a mongoose and a flamingo a mongoose that preys on flamingos
flounder+sardine	(coordinating) (right-headed)	a cross between a sardine and a flounder a type of sardine eaten by flounder

- (18) Prediction: If HeadFaith influences blend formation, participants will match...
 - (a) the output blend that is **more faithful** to the <u>second source word</u> to
 - (b) the definition that uses the <u>second source word</u> as a **head**
 - → Shaw (2013) found a significant effect of HeadFaith for both segmental and stress preservation

3. Experiments: Design, methodology, participant demographics

3.1 Stimulus design

- (19) Segmental preservation (Exp 1, 3)
 - Each source word pair has two possible switchpoints: C1__C2 around main-stress vowel
 - Example: *plot* + *litigate* = *plotigate*, *plitigate*
- (20) Stress preservation (Exp 2, 4)
 - Source word 1 has initial stress; source word 2 has final stress (some are monosyllables)
 - Switchpoint is a C that follows 'V in wd1, precedes 'V in wd2
 - Example: *fudge* + *rejéct* = *fúdgect*, *fudgéct*

3.2 Experiment design

- (21) Web-based experiments
 - Used a modified version of the Experigen software (Becker 2013)
- (22) Web interface was drag-and-drop
 - (a) Participants saw a pair of blends and a pair of definitions
 - Blends differed in segmental / stress properties
 - Definitions differed by lexical category or headedness factors
 - (b) Participants were asked to click on a blend, drag it to the best-matching definition

p<u>1</u>á<u>t</u> | | <u>1</u>í<u>t</u>ıgeıt

(23) Example: Segmental blend (Exp 1, 3)

• Presented orthographically

The definitions below describe two ways to plot litigate . One of them is to plotigate and the other one is to plitigate . Please drag the words to the box that best matches each blend to its definition.							
	plotigate	plitigate					
to sue a plagiarist over the plot of a novel is to							
to sue a conspirator when they plot against you is to							

- (24) Example: Stress blend (Exp 2, 4)
 - (a) Stress was indicated by accent marks and underlining of the stressed syllable
 - (b) Stress blends were presented with audio recordings
 - (c) Experiments included a stress pre-test page
 - Task: Match *object* (N) and *object* (V) with their respective definitions
 - Determined whether participants understood the stress notation

The definitions below describe two ways to fudge reject . One of them is to fudgéct and the other one is to fúdgect . Please listen to the audio, then drag the words to the box that best matches each blend to its definition.							
	fud <u>géct</u>	<u>fúdg</u> ect]				
to refuse to eat any fudge is to to refuse to fudge a calculation is to							

- (25) Presentation order and structure
 - (a) $2 \times 2 = 4$ possible ways to present an item (blend pair + definition pair)

 - Order of the definitions $N+V|V+V \sim V+V|N+V$
 - \rightarrow These options were counterbalanced across participants
 - (b) Sequence of items was randomized for each participant
- (26) Additional information collected
 - (a) Difficulty rating: very easy (1) to very hard (5)
 - (b) Post-survey questionnaire:
 - Strategy that participants employed (if any)
 - Were any pairs particularly difficult?
 - Demographics: Native language, handedness, gender, level of education

3.3	Part	icipant informatio	n						
(27)	Part	cicipants were recruited and paid using Amazon's Mechanical Turk (MT)							
	• S	ee Sprouse (2011) on	the use of	f MT for la	arge-scale 1	inguistics experiments			
	(a)	MT is a web-based	crowdsou	rcing appl	ication				
	(b)	Provides access to 1	large num	bers of por	tential part	icipants			
	(c)	Participant criteria	on Mecha	anical Turk	c for these	experiments			
		• Restricted to US pa	rticipants o	nly		-			
		• MT task approval r	ate of 95%	or better / A	t least 100 p	rior tasks "approved"			
(28)	474	participants include	d in analy	vsis					
		529 total; criteria for e	xclusion:						
		• Didn't answer all ite	ems (16)		• Eng	glish not the first language (8)			
		• Didn't answer any o	demographi	cs questions	(32) • Fai	led the stress pre-test (25)			
(29)	Part	cicipant demographi	CS						
	(a)	Gender: Similar n	umbers of	men and	women aci	ross the experiments			
		Experiment	Female	Male Not	reported	-			
		1 (NFaith seg)	68	50	0				
		2 (NFaith stress)	64	60	0				
		3 (HdFaith seg)	71	52	0				
		4 (HdFaith stress)	58	49	2				
	(b)	Age: A wide range	e of ages, v	with the m	ean in the	30s			
		Experiment	Oldest	Youngest	Mean				
		1 (NFaith seg)	64	20	36.85				
		2 (NFaith stress)	76	19	35.1				
		3 (HdFaith seg)	72	19	34.7				
		4 (HdFaith stress)	69	19	36.8				
4. E	xper	iments: Results							

4.1 Analysis by participants

(30) Summary: Did participants gave a majority of NFaith/HdFaith responses?

	segments	stress	• HeadFaith results replicate Shaw (2013)
NounFaith	yes	marginally	 Confirms sensitivity of methodology NounFaith effect observed
HeadFaith	yes	∎ yes	- Weaker than HeadFaith

• Statistical analysis: Exact binomial test (see (33))

(31) Proportion of participants with a majority of NounFaith or HeadFaith responses

(32) Number of NounFaith/HeadFaith responses by individual participant

(33) Numerical results and statistical analysis: responses by participant

	# participants with <i>n</i> N(Hd)Faith responses						total #	# with 5+	significant	ly			
	1	2	3	4	5	6	7	8	9	participants	N(Hd)Faith	$\neq 50\%?^{1}$	•
N seg	0	10	9	27	26	23	19	3	1	118	72 (61.0%)	<i>p</i> = 0.02097	*
■ N stress	0	11	15	26	40	20	10	2	0	124	72 (58.1%)	p = 0.08755	
∎ Hd seg	2	5	9	17	36	25	14	7	8	123	90 (73.2%)	<i>p</i> < 0.00001	***
Hd stress	1	6	14	18	28	17	14	6	5	109	70 (64.2%)	p = 0.00385	**
	1	Exac	t bin	omial	test.	when	re a N	(Hd)	Fait	h-conforming	response is s	cored as a suc	ccess

4.2 Analysis by responses

(34) Summary: How many of the **individual responses**, pooled across participants, conform to the NounFaith/HeadFaith predictions?

	segments	stress	• HdFaith replicates Shaw (2013)
NounFaith	marginally	not significant	• NFaith effect is weaker
HeadFaith	yes	∎ yes	

• Statistical analysis: Generalized linear mixed model (see (36))

(35) Proportion of NounFaith or HeadFaith responses across all participants

(36) Numerical results and statistical analysis²: individual responses across participants

	# conforming	# non-conforming	Estimate	Std. Error	z value	$\Pr(> z)$
N seg	589 (55.5%)	473 (44.5%)	0.23821	0.13109	1.817	<i>p</i> =0.06920 .
■ N stress	577 (51.7%)	539 (48.3%)	0.07118	0.12923	0.551	<i>p</i> =0.58176
Hd seg	663 (59.9%)	444 (40.1%)	0.41860	0.12997	3.221	p=0.00128 **
Hd stress	560 (57.1%)	421 (42.9%)	0.29804	0.13201	2.258	<i>p</i> =0.02397 *

²Generalized linear mixed model fit by the Laplace approximation

This analysis models the probability of N(Hd)Faith-conforming responses in terms of:

- Experiment: N|seg, N|stress, Hd|seg, Hd|stress (modeled as a fixed factor)
- Items and participants are included as random intercepts

AIC BIC logLik deviance	Random effe	cts:		
5782 5820 -2885 5770	Groups	Name	Variance	Std.Dev.
Number of observations: 4266.	participants	(Intercept)	0.12685	0.35616
groups: participants, 474; items, 36	items	(Intercept)	0.10840	0.32924

4.3 Discussion

- (37) HeadFaith results replicate Shaw (2013); modified methodology is viable
- (38) Apparent differences in effect size (but see §6 for more discussion)
 - HeadFaith > NounFaith
 - segmental preservation > stress preservation
- (39) Is there a NounFaith effect? It looks like the answer is yes
 - (a) Both segmental, stress NounFaith effects at least marginal by participant
 - (b) NFaith stress effect is weak, but cannot be discounted yet—see §6

5. Noun faithfulness as an emergent effect for English speakers

- (40) Exp 1–2 find NFaith effects in novel English blends
 - \rightarrow This section makes the case that these NFaith effects are **emergent**
- (41) English speakers have not learned a ranking involving MaxSEG(N)
 - (a) Granted, N are longer than V (by syllable count) in English (Cassidy & Kelly 1991)
 - (b) However, no active alternations involving segment deletion distinguish N, V
 - (c) Furthermore, there is no mandatory maximum size for either N or V
 - → Conclusion: No evidence is encountered during L1 acquisition of English for any crucial ranking involving the constraint MaxSeg(N)
- (42) English speakers have not learned a ranking involving MaxStress(N)
 - (a) N and V have different default stress patterns (Chomsky & Halle 1968, Ross 1973), but both of these patterns involve defaults—not a matter of faithfulness
 - (b) If anything, N stress behavior is *more* predictable (*less* indicative of faithfulness to underlying contrasts) than V stress behavior

Kelly & Bock (1988: 391), reporting stress data from Francis & Kučera (1982)

Disyllables used only as	N	Initial stress	Final stress
Nouns	3002	94%	6%
Verbs	1021	31%	69%

• N show strong preference for initial stress

- V prefer final stress, but preference is not as strong
- → Conclusion: **No evidence** is encountered during L1 acquisition of English for any crucial ranking involving the constraint MaxStress(N)

- (43) The emergent effects of NounFaith detected in our experiments are somewhat different from the **covert** *ranking* effects reviewed in (4)
 - (a) We are not claiming any particular *ranking* for MaxSeg(N) or MaxStress(N)
 Exception: NFaith >> VFaith, if there are VFaith constraints
 - (b) If the grammar is choosing between candidate blend → definition assignments as in (13)–(14), the only difference between the competing candidates is that one has more NounFaith violations than the other
 - (c) So: NounFaith constraints can have emergent effects even if ranked very low

6. Conclusions and implications

- 6.1 Segmental effects, stress effects, and phonological typology
- (44) The NounFaith effects observed in phonological typology are very heavily skewed toward **prosodic**, rather than **segmental**, effects (Smith 2011)—*why not in blends?*
 - The HeadFaith experiments (here and in Shaw 2013) likewise found a stronger effect for segmental preservation than for stress preservation in blends
- (45) *Methodology?* Are these blend experiments **better at finding** segmental effects?
 - (a) Because the stress experiment involved a harder task?
 - Participants listened to an audio file in the stress condition only
 - Some English speakers find it hard to make *metalinguistic* stress decisions; to what extent would that interfere with our task?
 - (b) It might be informative to try an *audio-only* version of both tasks
- (46) *Phonology?* Are segmental effects for positional faithfulness **actually phonologically more robust** than stress effects?
 - → If so, this would be evidence that the prosodic bias in the typology of NounFaith effects is due to **channel bias**, not analytic bias (Moreton 2008)
 - That is, both segmental and prosodic NounFaith patterns *can* be learned, but *something about acquisition/transmission* makes prosodic NounFaith patterns *more likely* to be learned

6.2 HeadFaith versus NounFaith

- (47) The HeadFaith effects found here were stronger than the NounFaith effects, for both segmental and stress experiments—*why?*
- (48) Difference between first/left word and second/right word?
 - (a) In our experiments, the head was on the right, but the noun was on the left
 - Headed blends in English are overwhelmingly right-headed (Shaw 2013)
 - The NounFaith experiments had to vary the nonhead rather than the head to keep output stress constraints and HeadFaith constraints consistent
 - (b) Arndt-Lappe & Plag (2013) found a tendency to preserve aspects of the second/right source word in English blends—in *non-headed* blends!
 - Did this "right-side privilege" boost the HeadFaith, attentuate NounFaith?
 - \rightarrow Potentially informative to replicate these experiments in additional languages

- 6.3 The implications of finding emergent effects for NounFaith
- (49) When emergent effects of covert constraints or constraint rankings are found:
 - if they could not have been learned from L1 language experience
 - \rightarrow then they are evidence for universal aspects of the phonological grammar
 - Universal here may mean innate, but need not
- (50) Our results provide evidence that NounFaith constraints are universal
 - Complements (and replicates) results for HeadFaith (Shaw 2013; Shaw et al. 2014)
 - Do all categories of positional faithfulness have emergent effects?
 - → Can this line of research **distinguish** positional effects that are intrinsic to the phonological grammar from those that arise due to perceptual or phonetic factors?

Acknowledgments

Thanks to Katherine Shaw, Fabian Monrose, Andrew White, and Greg Stephan for comments and discussion, and to Chris Wiesen of the Odum Institute at UNC-CH for statistical consultation. This research is supported by NSF grant #CNS 1318520, "Towards pronounceable authentication strings."

(A1)	Experiment	l (NounFaith,	Segme	ental)			
Sourc	e words	Blends	Definitions				
break	<u>rectify</u>	brea <u>ktify</u>	N+V	to make up for a delayed paycheck with extra lunch time			
		b <u>rectify</u>	v+v	to fix something in a way that actually makes it worse			
drain	<u>renovate</u>	drai <u>n</u> ovate	N+V	to renovate the plumbing in your house			
		d <u>renovate</u>	v+v	to renovate your house until you bankrupt yourself			
drag	<u>regulate</u>	<i>dragulate</i>	N+V	to make rules about what can be worn at a drag show			
		d <u>regulate</u>	v+v	to make rules in order to drag a project out			
brood	<u>ridicule</u>	broo <u>dicule</u>	N+V	to ridicule someone's many children			
		b <u>ridicule</u>	v+v	to ridicule someone for sulking			
creep	<u>reprimand</u>	creep <u>rimand</u>	N+V	to scold someone because they are a creep			
		<i>c<u>r</u>eprimand</i>	v+v	to scold someone when they creep up on you			
plot	<u>litigate</u>	plo <u>t</u> igate	N+V	to sue a plagiarist over the plot of a novel			
		p <u>litigate</u>	v+v	to sue a conspirator when they plot against you			
club	<u>liberate</u>	<i>clu<u>b</u>erate</i>	N+V	to release someone from a society membership			
		<i>c<u>l</u>iberate</i>	v+v	to release a captive by bludgeoning their captors			
spot	<u>petrify</u>	spo <u>trify</u>	N+V	to turn something to stone just in a few places			
		spetrify	v+v	to turn something to stone just by noticing it			
storm	<u>terminate</u>	stor <u>minate</u>	N+V	to artificially stop a violent storm			
		s <u>terminate</u>	v+v	to end a meeting when you storm out of it			

Source `	Words	Blends	Defin	itions			
watch	<u>choose</u>	wát <u>choose</u>	N+V	to pick out a watch			
		wat <u>chóose</u>	v+v	to decide to watch			
blubber	<u>boast</u>	blúb <u>boast</u>	N+V	to boast of how your crew brought back so much blubber			
		blub <u>bóast</u>	v+v	to boast of how you made a younger child blubber			
ship	<u>prepare</u>	shí <u>pare</u>	N+V	to prepare a ship for something			

22nd Manchester Phonology Meeting

		shi <u>p</u> áre	v+v	to prepare to ship something
trip	<u>repent</u>	tr <u>ípent</u>	N+V	to repent after a trip you took
		tr <u>ipént</u>	v+v	to repent after you trip someone
spell	<u>learn</u>	spél <u>learn</u>	N+V	to learn a magic spell
		spel <u>léarn</u>	v+v	to learn to spell
fudge	<u>reject</u>	<i>fúdg</i> ect	N+V	to refuse to eat any fudge
	-	fudgéct	v+v	to refuse to fudge a calculation
prune	<u>enjoy</u>	prúnej <u>oy</u>	N+V	to enjoy dried plums
		prunejóy	v+v	to enjoy trimming shrubbery
train	announce	<i>trái<u>no</u>unce</i>	N+V	to announce railway arrivals
		<i>trai<u>n</u>óunce</i>	v+v	to announce that you will be working out
jam	<u>permit</u>	já <u>mit</u>	N+V	to permit sweet fruit preserves
	-	já <u>mít</u>	v+v	to permit musicians to improvise

(A3) Experiment 3 (HeadFaith, Segmental)

Source Words		Blends Defini		itions		
baboon	<u>bandit</u>	baboo <u>ndit</u>	COORD	a baboon who steals like a bandit		
		ba <u>bandit</u>	R-HD	a baboon-stealing bandit		
buccaneer	narrator	buccanee <u>rrator</u>	COORD	a pirate who tells stories		
		<i>bucca<u>narrator</u></i>	R-HD	someone who tells pirate stories		
lampoon	punishment	lampoo <u>nishment</u>	COORD	punishing someone by printing a lampoon		
		lampunishment	R-HD	punishing someone for printing a lampoon		
boutique	<u>taxi</u>	bouti <u>xi</u>	COORD	a taxi with on-board boutique shopping		
		bou <u>taxi</u>	R-HD	a taxi to the local boutiques		
impala	<u>polecat</u>	<i>impal<u>cat</u></i>	COORD	a hybrid of a polecat and an impala		
		im <u>polcat</u>	R-HD	a polecat that hunts impalas		
armadillo	<u>dolphin</u>	<i>arma<u>dil</u>phin</i>	COORD	a hybrid of a dolphin and an armadillo		
		arma <u>dolphin</u>	R-HD	a dolphin with an armadillo's leathery skin		
rhododendron	<u>dandelion</u>	rhododen <u>delion</u>	COORD	a cross between a dandelion and a rhododendron		
		rhodo <u>dandelion</u>	R-HD	a dandelion that grows in rhododendron-like clusters		
flamingo	<u>mongoose</u>	<i>flaming</i> oose	COORD	a hybrid of a mongoose and a flamingo		
		<i>fla<u>m</u>ongoose</i>	R-HD	a mongoose that preys on flamingos		
piranha	<u>rhino</u>	pira <u>nho</u>	COORD	a hybrid of a rhino and a piranha		
		pi <u>rhino</u>	R-HD	a rhino that is fierce like a piranha		

(A4) Experiment 4 (HeadFaith, Stress)

Source Words Blends		Definit	Definitions			
zebra	<u>giraffe</u>	zéb <u>raffe</u>	COORD	a cross between a giraffe and a zebra		
		zeb <u>ráffe</u>	R-HD	a giraffe with zebra stripes		
robin	<u>baboon</u>	ró <u>boon</u>	COORD	a cross between a baboon and a robin		
		ro <u>bóon</u>	R-HD	a baboon with a robin-red chest		
turkey	<u>raccoon</u>	túr <u>coon</u>	COORD	a cross between a turkey and a raccoon		
		<i>tur<u>c</u></i> óon	R-HD	a raccoon that steals turkey eggs		
flounder	<u>sardine</u>	<i>flóun<u>d</u>ine</i>	COORD	a cross between a sardine and a flounder		
		<i>floun<u>d</u>ine</i>	R-HD	a type of sardine eaten by flounder		
bachelor	<u>valet</u>	báche <u>let</u>	COORD	a valet who is also a bachelor		
		bache <u>lét</u>	R-HD	a valet who works for a bachelor		
bistro	<u>garage</u>	bíst <u>rage</u>	COORD	a building containing a garage and a bistro		
		bist <u>ráge</u>	R-HD	the delivery garage of a bistro		
pygmy	<u>premier</u>	<i>pý<u>gm</u>ier</i>	COORD	a leader who is also a pygmy		
		<i>pyg<u>m</u>ier</i>	R-HD	a leader of the pygmies		

raisin	<u>dessert</u>	<i>rái<u>s</u>sert</i>	COORD	a type of raisin eaten for dessert	
		<i>rai<u>ssért</u></i>	R-HD	a raisin-filled dessert	
lizard	<u>gazelle</u>	<i>lí<u>z</u>elle</i>	COORD	a hybrid of a gazelle and a lizard	
		li <u>zélle</u>	R-HD	a gazelle that is scaly like a lizard	

References

Albright, Adam. 2008. How many grammars am I holding up? WCCFL 26: 1-20.

- Arndt-Lappe, Sabine & Ingo Plag. 2013. The role of prosodic structure in the formation of English blends. *English Language and Linguistics* 17: 537-563.
- Anttila, Arto. 2002. Morphologically conditioned phonological alternations. NLLT 20: 1-42.
- Barnes, Jonathan. 2006. Strength and weakness at the interface: Positional neutralization in phonetics and phonology. Berlin: Mouton.
- Becker, Michael. 2013. Experigen [Computer software]. Accessed March 2013 at [https://github.com/tlozoot/experigen].

Beckman, Jill N. 1999. Positional Faithfulness. New York: Garland.

- Berent, Iris, Donca Steriade, Tracy Lennertz, and Vered Vaknin 2007. What we know about what we have never heard: evidence from perceptual illusions. *Cognition* 104:591-630.
- Broselow, Ellen, Su-I Chen, and Chilin Wang. 1998. The emergence of the unmarked in second language phonology. *Studies in Second Language Acquisition* 20: 261–80.
- Cable, Seth. 2005. Phonological noun-verb dissimilarities in Optimal Paradigms. Ms., MIT. [Revised version of paper presented at the Workshop on (Non)-identity Within a Paradigm.]
- Cassidy, Kimberly Wright, and Michael H. Kelly. 1991. Phonological information for grammatical category assignments. *Journal of Memory and Language* 30: 348-369.

Chomsky, Noam, and Morris Halle. 1968. The sound pattern of English. New York: Harper and Row.

- Davidson, Lisa. 2001. Hidden rankings in the final state of the English grammar. In Graham Horwood and Se-Kyung Kim (eds.), *RuLing Papers II*, 21-48. New Brunswick: Rutgers University.
- Davidson, Lisa. 2010. Phonetic bases of similarities in cross-language production: Evidence from English and Catalan. *Journal of Phonetics* 38: 272-288.
- Francis, W. Nelson, and Henry Kučera. 1982. Frequency analysis of English usage: Lexicon and grammar. Boston: Houghton Mifflin.
- Ito, Junko, and Armin Mester. 1999. The structure of the phonological lexicon. In Natsuko Tsujimura (ed.), *The Handbook of Japanese Linguistics*, 62-100. Oxford: Blackwell.
- Ito, Junko, and Armin Mester. 2001. Covert generalizations in Optimality Theory: the role of stratal faithfulness constraints. *Studies in Phonetics, Phonology and Morphology* 7: 3-33.
- Jaber, Aziz. 2011. High vowel syncope in Jordanian Arabic: A positional faithfulness treatment. Ms., UNC Chapel Hill.
- Jacobs, Haike, and Carlos Gussenhoven. 2000. Loan phonology: perception, salience, the lexicon and OT. In J. Dekkers et al. (eds.), *Optimality Theory: Phonology, Syntax, and Acquisition*, 193-210. Oxford: OUP.
- Jesney, Karen. To appear. A learning-based account of L1 vs. L2 cluster repair differences. In Utako Minai, et al. (eds.), *Selected Proceedings of the 5th Conference on Generative Approaches to Language Acquisition – North America* (GALANA 2012). Somerville, MA: Cascadilla Proceedings Project.
- Kelly, Michael H., and J. Kathryn Bock. 1988. Stress in time. *Journal of Experimental Psychology: Human Perception and Performance* 14: 389-403.
- McCarthy, John, and Alan Prince. 1994. The emergence of the unmarked: Optimality in prosodic morphology. *NELS* 24, vol.2, 333-379.
- Moreton, Elliott. 2008. Analytic bias and phonological typology. Phonology 25:83-127.
- Moreton, Elliott, Gary Feng, and Jennifer L. Smith. 2008. Syllabification, sonority, and perception: new data from a language game. *CLS* 41 (vol. 1): 341-355.
- Pater, Joe. 2010. Morpheme-specific phonology: Constraint indexation and inconsistency resolution. In Steve Parker, (ed.) *Phonological argumentation: Essays on evidence and motivation*, 123-154. London: Equinox.
- Ross, J.R. 1973. Leftward ho! In Steven R. Anderson & Paul Kiparsky (eds.), *A Festschrift for Morris Halle*, 166-173. New York: Holt, Rinehart, & Winston.
- Shaw, Katherine E. 2013. Head faithfulness in lexical blends: A positional approach to blend formation. MA thesis, UNC.
- Shaw, Katherine E., Andrew M. White, Elliott Moreton, and Fabian Monrose. 2014. Emergent faithfulness to morphological and semantic heads in lexical blends. In John Kingston, Claire Moore-Cantwell, Joe Pater, and Robert Staubs (eds.), *Proceedings of the 2013 Meeting on Phonology*. Washington, DC: LSA.
- Smith, Jennifer L. 2011. Category-specific effects. In Marc van Oostendorp, Colin Ewen, Beth Hume, & Keren Rice (eds.), *The Blackwell Companion to Phonology*, 2439-2463. Malden, MA: Wiley-Blackwell.
- Sprouse, Jon. 2011. A validation of Amazon Mechanical Turk for the collection of acceptability judgments in linguistic theory. *Behavior Research Methods* 43: 155-167.
- Zhang, Hang. 2013. The acquisition of Mandarin Chinese tones by English, Japanese, and Korean speakers. PhD dissertation, UNC.