Japan Phonology Forum | 29 August 2020

How productive is core-periphery structure in the Japanese lexicon?

Empirical results and theoretical implications

Jennifer L. Smith University of North Carolina at Chapel Hill

https://users.castle.unc.edu/~jlsmith

Acknowledgements

- Collaborator: Yuka Muratani Tashiro (Indiana U) on the experiment
- Support: Institute for the Arts and Humanities at UNC-CH
- Statistical consulting: Chris Wiesen, Odum Institute at UNC-CH
- Experiment materials and recruiting: Shigeto Kawahara, Masayuki Tashiro
- Comments and discussion:
 - Brian Hsu, Junko Ito, Armin Mester, Jeff Mielke, Elliott Moreton, Katya Pertsova
 - Audiences at OCP 15, LSA 2019, UC Santa Cruz, Georgetown, and UNC-CH

Overview

- Theoretical background: Lexical classes and core-periphery structure
 - *Productive* core-periphery structure predicts a **markedness hierarchy**
- Results from a **nonce-loanword nativization experiment** in Japanese
 - Some—but not all—speakers show a consistent markedness hierarchy
- Some theoretical implications
 - **Faithfulness** relations across lexical strata must be *flexible*

1. Theoretical background and core-periphery structure

- (1) What does it mean for the **phonological grammar** when a language has
 - distinct lexical classes (strata) with
 - distinct phonological patterns?
- (2) **Japanese** is a well-known example (McCawley 1968; Ito & Mester 1995ab, 1999, 2008; Irwin 2011; etc.)
 - Lexical classes are **phonologically** and **morphologically** distinct
 - Long history of language contact and lexical borrowing
 - Lexical classes are psychologically real
 - *Experiments* show that native speakers are sensitive to phonological differences between classes (Moreton & Amano 1999; Gelbart & Kawahara 2007; Tanaka & Fujita 2020)
 - Are the phonological grammars of the classes synchronically different?

- (3) Phonological **contrast** and **restrictions** in constraint-based frameworks
 - (a) **Restriction** → enforced by **markedness** constraints (M)
 - *predictable* pattern; lack of contrast
 - (b) Lack of restriction \rightarrow enforced by faithfulness constraints (F)
 - *unpredictable* pattern; presence of **contrast**

- (4) What does this mean for **lexical classes**?
 - Assuming that phonological differences are **productive**
 - (a) Suppose some **restriction** is found in lexical class A but not B
 - (b) We must conclude that <u>**M** » **F**</u> for A but <u>**F** » **M**</u> for B

- (5) How can we **implement** this M/F ranking difference across classes?
 - Phonological models differ on this point
 - → As a result, they make different predictions about the **productivity** of **core-periphery structure**

(6) **Core-periphery structure**

- (a) Many languages have phonologically distinct lexical classes (strata) (Mathesius 1934; Fries & Pike 1949; Chomsky & Halle 1968; Postal 1968; Saciuk 1969)
- (b) These classes often form a 'hierarchy of foreignness' (Kiparsky 1968; Postal 1968; Saciuk 1969; Holden 1976)
- (c) **Core-periphery structure** (Ito & Mester 1995ab, 1999) → The classes form a **subset/superset relation** in their phonological restrictions

- (7) The typical core-periphery pattern:
 - Core: Phonologically restricted subset of the lexicon | more M » F
 - Periphery: Fewer phonological restrictions | more F » M

- Core, 'Native'
 - Restriction: No codas
 - *Restriction:* Only final stress
- 'Intermediate'
 - Restriction: No codas
 - *Contrast:* Non-final stress OK
- Periphery, 'Foreign'
 - *Contrast:* Codas OK
 - *Contrast:* Non-final stress OK

- (8) Work pioneered by Ito & Mester (1995ab, 1999) established a key insight:
 - **Productive** core-periphery structure → a **hierarchy of M constraints**
 - (a) M prohibiting 'less foreign' structures (more core) → low-ranked
 - Structures that violate them are better tolerated in loanwords
 - (b) **M** prohibiting *'more foreign'* structures (more peripheral) \rightarrow *high-ranked*
 - Structures that violate them are more aggressively **nativized**

- NoCoda enforced in Intermediate
 Native
- FINALSTRESS enforced in Native only
- M hierarchy: NoCoda » FinalStress

- (10) Different **phonological models** of productive lexical classes make different predictions about the **productivity of core-periphery structure**
 - (a) **Stratified Faithfulness** (with **Ranking Consistency**) (Ito & Mester 1999: 82; see also Fukazawa et al. 1998)
 - (b) Weighted Scalar Constraints (Hsu & Jesney 2017, 2018)
 - (C) Cophonologies (e.g., Inkelas & Zoll 2007)
 - (d) *New proposal:* HG Stratified Faithfulness (Smith 2018)
 - \rightarrow We will return to these models at the end of the talk
 - Key point: Given a M hierarchy as seen above,
 a phonological model will enforce core-periphery structure only if the ranking among F constraints remains the same for all lexical classes

- (11) **Empirical test** for productive core-periphery structure:
 - It should create impossible-nativization effects (Ito & Mester 1999, 2001)
 - (a) If a core-periphery structure with **M**(*no-X*) » **M**(*no-Y*) is productive...
 - (b) ...then it should **not** be possible to nativize X *without* nativizing Y
 - (c) Prediction: A form that does this is an *impossible nativization*, rejected or dispreferred by native speakers
 - Nativizing stress, not coda \rightarrow impossible nativization

- (12) **Empirical focus** of this project
 - Do **Japanese** speakers show **impossible-nativization effects** for the M constraints that distinguish the lexical classes?
 - Preview of results: Sometimes, but not always!
- (13) **Theoretical implications** of these results
 - (a) Predictions too strong ("grammars must produce IN effects")
 - Stratified Faithfulness with Ranking Consistency
 - Weighted Scalar Constraints
 - (b) Predictions too weak ("no reason to expect IN effects")
 - Stratified Faithfulness without Ranking Consistency
 - Cogrammars
 - (c) → **Preliminary support for HG Stratified Faithfulness**

2. Japanese: Productive impossible-nativization effects?

2.1 Japanese lexical classes (strata)

- (14) **Japanese** is a well-known example of a language with a **stratified lexicon** (e.g., McCawley 1968; Ito & Mester 1995ab, 1999, 2008; Irwin 2011)
 - Lexical classes are **phonologically** and **morphologically** distinct
 - Long history of language contact and lexical borrowing
 - Lexical classes are psychologically real
 - *Experiments* show that native speakers are sensitive to phonological differences between classes (Moreton & Amano 1999; Gelbart & Kawahara 2007; Tanaka & Fujita 2020)

- (15) Do the **observed phonological differences** between lexical classes correspond to **productive impossible-nativization effects**?
 - → **Nonce-loan nativization experiment** (Smith & Tashiro 2019)

- (16) Strata (classes) in the Japanese lexicon
 - (a) 'Native' (N) 和語 the core
 - Obeys the *most* phonological restrictions
 - (b) 'Sino-Japanese' (SJ) 漢語—very old loans, starting ca. 500ce
 - Somewhat less restricted (see Kawahara et al. 2003 on complications)
 - (c) Recent loans 外来語— typically from European languages (mostly English) and dating largely from the 19th century (see review in Irwin 2011)
 - The recent loans form a continuum, but less restricted than N, SJ
 - For discussion, useful to distinguish: (Ito & Mester)
 'Assimilated Foreign' (AF) more nativized
 'Unassimilated Foreign' (UF) less nativized

(17) M constraints that distinguish strata

(after Ito & Mester 1995b)

- **NoSI** 'Coronal fricatives are palatal before [i]'
- **NoTI** 'Coronal plosives are palatal before [i]'
- **NoDD** 'No voiced geminate obstruents'
- **NoP** 'No singleton (non-geminate) [p]'
- **NoNT** 'No nasal-voiceless obstruent sequences'; Hayes (1999), Pater (2001)
- Formal constraint definitions are in Appendix 2

- (18) Observed *enforcement* of M constraints in strata active alternations (Ito & Mester 1995b, 1999)
 - In UF: NoSI
 - In AF: NoSI and { NoTI, NoDD }
 - In SJ: NoSI and { NoTI, NoDD } and NoP
 - In N: NoSI and { NoTI, NoDD } and NoP and NoNT
 - Relevant examples are in Appendix 2

- (19) Predicted markedness ranking for Japanese stratified lexicon NoSI » { NoTI, NoDD } » NoP » NoNT
 - Follows from (18)

2.2 Nonce-loanword experiment: Materials and methodology

(20) From (19) above:

Predicted markedness ranking for Japanese stratified lexicon (from I&M) NoSI » { NoTI, NoDD } » NoP » NoNT

- Do speakers show impossible-nativization (IN) effects?
- If so, do those IN effects reflect this ranking?

(21) **Nonce-loanword nativization experiment** — loans from "English"

- (a) Methodology based on Guarani nonce-loan experiment (Pinta 2013)
- (b) Incorporated audio stimuli as well as orthographic representations
- (c) Increased the number of M constraints and the number of participants

(22) **Stimuli** — Nonce loanwords

- (a) 5 constraints \rightarrow all possible pairwise comparisons \rightarrow **10 constraint pairs**
- (b) For each constraint pair, **4 English-like nonce words**
 - Each violates both constraints in the pair, but no others in (20)
 - Loci of violation are in the order M*i*–M*j* twice, M*j*–M*i* twice
 - All English "words" are disyllabic with initial stress
 - Place is alveolar for all voiced geminates ([dd]) and NT clusters ([nt])

(23) Example: Nonce words violating both NoP and NoSI

English nonce word		Potential faithful Japanese adaptation
pimsill	[p 1m <u>s1</u>]	[p imա <u>si</u> rɯ]
polsift	[p 2] <u>s1</u> ft]	[p orɯ <u>si</u> фɯto]
sifpem	[<u>s1</u> fpɛm]	[<u>si</u> фɯ p emɯ]
silpesk	[<u>s1</u>]pɛsk]	[<u>si</u> rɯ p esɯkɯ]

- (24) **Response options** two-alternative forced-choice task
 - (a) Each nonce word had two 'Japanese' nativization options
 - (b) Each option satisfies one constraint, violates the other
 - Response options were otherwise identical, including pitch accent
- (25) Example: Nativization response options for NoP versus NoSI

English nonce word

pimsill [**p**Im<u>sI</u>] polsift [**p**2]<u>sI</u>ft] sifpem [<u>sI</u>f**p**Em] silpesk [<u>sI</u>]**p**Esk] Satisfies only NoSI: /si/→[¢i] [pimu<u>¢i</u>rɯ] [porɯ<u>¢i</u>φɯto] [<u>¢i</u>φɯpemɯ] [<u>¢i</u>rɯpesɯkɯ] Satisfies only NoP: /p/→[h] [<u>h</u>imusiru] [<u>h</u>orusiфuto] [siфu<u>h</u>emu] [siru<u>h</u>esuku]

(26) Example screen from experiment

English translation

- (27) Stimuli (40 total, + 3 practice) were presented as audio and orthography
 - (a) Audio could be replayed by participants
 - (b) Japanese native-speaker transcribed audio files as an accuracy check
 - (c) Order of response choices counterbalanced across participants
 - (d) Sequence of nonce-word stimuli differently randomized each time
- (28) Web-based experiment
 - Preceded by an audio-check question (using audio? understands Japanese?)
 - Followed by a brief questionnaire:
 - demographic information
 - information about participants' strategies

(29) **Participants**: *n*=40

- (a) Recruited via Facebook and e-mail
- (b) Self-reported native speakers of Japanese, raised in Japan, age ≥ 18
- (c) Gender: 26 female | 13 male | 1 unspecified
- (d) Age: born in 1959 (age 58)–1997 (age 20); median 1985 (age 32)

(e) Education:

0	tech or jr college grad	ın 4-yr	4-yr univ graduate					
1	2	7	17	1	5	3	4	

2.3 Nonce-loanword experiment: Results and discussion

(30) **Predictions**:

If Japanese speakers have productive core-periphery phonology...

- (a) They should show **impossible-nativization effects**(preferring to **satisfy certain M** over others)
 - *Preview:* Most speakers have preferences for M pairs
- (b) They should have a **M hierarchy**(the 'backbone' of the core-periphery structure)
 - → The **pairwise M rankings** from the experiment should all fit together into **one consistent M ranking**
 - Preview: Some speakers have a consistent M ranking
 Some do not

(31) Critical methodology question: How to **interpret** response patterns?

- Each constraint pair tested 4 times
- Ci vs. Cj score could be 4:0, 3:1, 2:2 when do we say Ci » Cj?

(32) Response strength, **across** participants: Ci vs. Cj treated the same way...

4/4 times	3/4 times	2/4 times	Total
217	118	65	400

(33) Response strength, **by** participant: C_i vs. C_j treated the same way...

- (34) Options for **establishing participant constraint rankings** from experiment results
 - (a) **Hand-ranking**: Score 4:0 and 3:1 pairs as **ranked**, 2:2 pairs as **tied** Combine pair rankings into full M hierarchy
 - *Concern:* Responses are likely to be **probabilistic**, not absolute
 - \rightarrow Can we justify grouping **3:1** with 4:0, rather than with 2:2?

(34) Options for **establishing participant constraint rankings** from experiment results

- (a) **Hand-ranking**: Score 4:0 and 3:1 pairs as **ranked**, 2:2 pairs as **tied** Combine pair rankings into full M hierarchy
 - *Concern:* Responses are likely to be **probabilistic**, not absolute
 → Can we justify grouping **3:1** with 4:0, rather than with 2:2?
- (b) Use the **Gradual Learning Algorithm** (Boersma & Hayes 2001) in Praat Derive a constraint ranking from each participant's response pattern
 - *Concern:* **How far apart** do GLA ranking values need to be for two constraints to qualify as 'ranked'?
 - Concern: GLA is unable to detect actual ranking contradictions
 → A » B, B » C, C » A would merely result in A=B=C for GLA

(35) Strategy: Use a **combination** of diagnostics

- Run **GLA** to identify particpants with all 5 ranking values **close together**
- Hand-check those grammars—evidence for contradictory rankings?

(36) **GLA analysis** — have the GLA 'learn' each participant's M grammar

• One Praat *PairDistribution* file representing each participant's responses

Т

• Example (for one participant):

Input	Candidate 1 propo (satisfies <mark>NoSI</mark>) —		Candidate 2 proportion (satisfies NoP) — 25%		
pimsill [pɪmsɪl]	[pimu <u>¢i</u> ru]	1	[<u>h</u> imu <mark>si</mark> ru]	0	
polsift [pɔlsɪft]	[poru <u>¢i</u> фuto]	1	[<u>h</u> oru <u>si</u> фuto]	0	
sifpem [sɪfpɛm]	[<u>¢i</u> фupemu]	0	[<u>si</u> фu <u>h</u> emu]	1	
silpesk [sɪlpɛsk]	[<mark>¢i</mark> rupesuku]	1	[<u>si</u> ru <u>h</u> esuku]	0	

• Then, run the GLA (Boersma & Hayes 2001) to model the learning of an OT grammar with that output distribution

(37) Ran 5 learning simulations for each participant

• Each simulation used standard Praat settings for OT learning

OTGrammar & PairDistribution: Learn	×	Ir
E valuation noise:	2.0	
Update rule:	Symmetric all	
Initial plasticity:	1.0	
Replications per plasticity:	100000	
Plasticity decrement:	0.1	
Number of plasticities:	4	
Rel. plasticity spreading:	0.1	
	V Honour local rankings	
Number of chews:	1	
Help Standards	Cancel Apply OK	

Initial ranking value 100.0

- (38) GLA derives ranking values for all 5 constraints (per participant)
 - Still need to determine: **How far apart** should the ranking values of two constraints be, for those constraints to count as **ranked**?
- (39) Find C1»C2 probability in outputs, given C1>C2 ranking distance (noise = 2.0) (calculation from Smith & Moreton 2012: §5.2; see also Boersma & Hayes 2001: 49)

If $C_1 > C_2$ with distance	1	1.9	2	3	4	4.6
Probability of C1 » C2 in an output is	0.638	0.749	0.760	0.856	0.921	0.948

What is the criterion for C1 'meaningfully dominates' C2?

- (a) *Strict* criterion: Distance >4.6, for 95% probability of domination
- (b) *Generous* criterion: Distance >1.9, for 75% probability of domination

(40) GLA-OT	results, st	rict criterion (C1 »	C2 95%): Cons	strain	ts ranked in
(a) 5 laye	rs O		(d) 2 layers	16	(8) S » TDNP (7) STDN » P STD » NP
(b) 4 laye	ers 1	S » TD » N » P			
			(e) 1 layer	18	undifferentiated
(c) 3 laye	rs 5	(4) S » TDN » P	Overall trend	d: S »	(D»T»N) » P
		S » D » TNP	• P always l	lowes	st (or tied)
			• <mark>S</mark> always ł	nighe	st (or tied)
			• D » T : 1 /	T » [) : 0
			T » N : 2 /	/ N »	T : 0

D » **N**: 3 / **N** » **D**: 0

(40) GLA-OT results. strict criterion (C1 » C2 95%): Constraints ranked in

(41) GLA-OT results, **strict** criterion (C1 » C2 **95%**; distance > 4.6)

(a) 5 layers	3	(2) S » T » D » N » P S » D » T » N » P	(d) 2 layers	9	(3) S » TDNP
(b) 4 layers	6	(2) S » TD » N » P S » D » TN » P			SDN » TF D » STNF
		S » D » N » TP S » N » TD » P D » S » TN » P			undifferentiated
(c) 3 layers	14		• P always	s highest (or tied) D: 3 T: 6	

(43) GLA-OT results, **generous** criterion (C1 » C2 75%; distance > 1.9)

(44) Key question: "Does every participant have a consistent M hierarchy"?

- How deep should the ranking be to count as having a hierarchy?
- (45) Summary of ranking results according to the GLA analysis

Number of layers in	n M hierarchy
---------------------	---------------

Number of participants	5	4	3	2	1
GLA/strict (C1 » C2 95%):	0	1	5	16	18
GLA/generous (C1 » C2 75%):	3	6	14	9	8

- (46) More accessible question:"Do **any** participants have **inconsistent** M hierarchies?"
 - GLA can't find this \rightarrow Examine "suspicious" participants by hand

(47) Participants likely to have inconsistencies (learned as "ties" by GLA)

- Have only 1 M layer even by the generous GLA analysis
- Have a **small number** of 2:2 constraint pairs in experiment ($\leq 3/10$)

Response patterns by GLA ranking group

• 0 ties: **ek74**

3.33.022

- 2 ties: nm68, fq02
- 3 ties: hc88, qh64, ij78

(48) Hand-ranked grammars — they *all* show **inconsistent** rankings

- (a) Number of 2:2 pairs = 0
 - ek74 ▼» NoSI » NoDD » NoP » NoTI »▼ | NoNT inconsistent
- (b) Number of 2:2 pairs = 2
 - fq02 ▼=NoSI » NoNT=▼ » NoDD » NoTI »▼ | NoP inconsistent
 - nm68 {NoSI »▼, NoNT=▼ } » NoP » NoTI »▼
- (c) Number of 2:2 pairs = 3
 - hc88 ▼=NoSI » NoNT » NoTI=▼» NoP=▼ | NoDD inconsistent

NoDD inconsistent

NoDD inconsistent

- **qh64** ▼=NoSI » { NoTI=▼, NoNT »▼ } » NoP
- ij78 ▼=NoSI » NoNT » { NoTI=▼, ▼» NoP } | NoDD inconsistent
- (49) Typically some constraint "ranked" high *and* low (often NoDD—!)
 → This collapses the whole hierarchy for GLA

(50) Summary: These six participants each have an M grammar where

- There is no single consistent ranking
 - Ranking relationships are **not transitive**
- **Removing just one constraint** leaves a transitive ranking
 - Does this result extend to other participants?
 - Looks promising for the HG Stratified Faithfulness model
 - → This model allows F constraints to change their relative rankings across strata when necessary

3. Conclusions and implications

- (51) Not all participants in the experiment have a consistent M hierarchy
 - This might mean...
 - (a) Lexical strata in Japanese are not productive?
 - But this contradicts other results about speaker knowledge of stratal differences
 - (b) Some speakers have **different F rankings** across lexical strata
 - Some evidence for this from the Mimetic stratum
 - This result would have implications for theoretical models of loanword phonology

(52) **Stratified Faith + Ranking Consistency** (Ito & Mester 1999; Fukazawa et al. 1998)

- Designed to model core-periphery structure
- (a) Lexical strata have **different M/F rankings** because
 - One M constraint hierarchy
 - Indexed F constraints for each lexical stratum
- (b) Lexical strata must form a **core-periphery structure**
 - F-internal ranking fixed (by **stipulation**) across strata
 - \rightarrow Too strong

Not all speakers have productive core-periphery phonology

- (53) Weighted Scalar Constraints (Hsu & Jesney 2017, 2018)
 - *Designed* to model core-periphery structure, but more simply
 - (a) Lexical classes have **different M/F rankings** because
 - One M constraint hierarchy One F constraint hierarchy — no stratum-specific constraints
 - Constraint weights are numerically **scaled**
 - based on the 'distance' a form has from the lexical core
 - (b) Lexical strata must form a **core-periphery structure**
 - This model **guarantees** consistent F ranking across strata
 - as long as certain restrictions are placed on the scaling factor
 - \rightarrow Too strong

Not all speakers have productive core-periphery phonology

- (54) **Cophonologies** (e.g., Inkelas & Zoll 2007)
 - Designed not to model core-periphery structure
 - (a) Lexical classes have **different M/F rankings** because
 - One M constraint hierarchy One F constraint hierarchy — no stratum-specific constraints
 - Each lexical stratum has its own ranking (cophonology)
 - (b) No predicted **core-periphery structure**
 - Potentially unlimited ranking differences across strata
 - \rightarrow Too weak

Guarani speakers show IN effects in the **absence** of direct evidence from the lexicon or from alternations (Pinta 2013; Smith & Pinta 2015)

(55) Harmonic Grammar (HG) Stratified Faithfulness (Smith 2018)

- *Designed* to make core-periphery structure a **default preference**, *not a requirement* of the grammar
- (a) Lexical strata have different M/F rankings because
 - One M constraint hierarchy
 - Indexed F constraints for each lexical stratum
- (b) **Core-periphery structure** *emerges* if no evidence to the contrary
 - **Cumulative constraint weights** in HG allow general F + stratumspecific F to create **default** consistent ranking effects (as in Jesney & Tessier 2011 for positional F)
 - But the F hierarchy *can* be different across strata, given the appropriate learning data

(56) **Next steps** in this project:

- Can a **faithfulness** ranking that **differs by stratum** account for the inconsistent M behavior in some experiment participants?
- If so, can the **HG Stratified Faithfulness** model produce the necessary rankings?

Boersma, Paul, & Bruce Hayes. 2001. Empirical tests of the Gradual Learning Algorithm. *Linguistic Inquiry* 32: 45–86.

- Chomsky, Noam, & Morris Halle. 1968. *The sound pattern of English*. New York: Harper and Row.
- Fries, Charles C., & Kenneth L. Pike. 1949. Coexistent phonemic systems. *Language* 25: 29-50.
 Fukazawa, Haruka, Mafuyu Kitahara, & Mitsuhiko Ota. 1998. Lexical stratification and ranking invariance in constraint-based grammars. *CLS* 34(2): 47–62.
- Gelbart, Ben, & Shigeto Kawahara. 2007. Lexical cues to foreignness in Japanese. *FAJL* 4: 49–60.
- Hayes, Bruce. 1999. Phonetically driven phonology: The role of Optimality Theory and inductive grounding. In Michael Darnell et al. (eds.), *Formalism and functionalism in linguistics*, vol. I, 243-85. Amsterdam: Benjamins.
- Holden, Kyril. 1976. Assimilation rates of borrowings and phonological productivity. *Language* 52: 131-147.

Hsu, Brian, & Karen Jesney. 2017. Loanword adaptation in Québec French: Evidence for weighted scalar constraints. *WCCFL* 34: 249–258.

Hsu, Brian, & Karen Jesney. 2018. Weighted scalar constraints capture the typology of loanword adaptation. *2017 Annual Meeting on Phonology*.

Inkelas, Sharon, & Cheryl Zoll. 2007. Is grammar dependence real? A comparison between cophonological and indexed constraint approaches to morphologically conditioned phonology. *Linguistics* 45: 133–171.

Irwin, Mark. 2011. Loanwords in Japanese. Amsterdam: Benjamins.

Ito, Junko, & Armin Mester. 1995a. The core-periphery structure of the lexicon and constraints on reranking. In Jill Beckman, Laura Walsh Dickey, & Suzanne Urbanczyk (eds.), *Papers in Optimality Theory* (UMOP 18), 181–209. Amherst: GLSA.

Ito, Junko, & Armin Mester. 1995b. Japanese phonology. In John Goldsmith (ed.), *The Handbook of Phonological Theory*, 817–838. Cambridge, Mass.: Blackwell.

Ito, Junko, & Armin Mester. 1999. The structure of the phonological lexicon. In Natsuko Tsujimura (ed.), *The Handbook of Japanese Linguistics*, 62–100. Malden: Blackwell.

- Ito, Junko, & Armin Mester. 2001. Covert generalizations in Optimality Theory: the role of stratal faithfulness constraints. *Proc. of the 2001 International Conference on Phonology and Morphology*, 3-33.
- Ito, Junko, & Armin Mester. 2008. Lexical classes in phonology. In Shigeru Miyagawa & Mamoru Saito (eds.), *The Oxford handbook of Japanese linguistics*, 84-106. Oxford: OUP.
 Jesney, Karen, and Anne-Michelle Tessier. 2011. Biases in Harmonic Grammar: The road to restrictive learning. *NLLT* 29: 251–290.
- Kawahara, Shigeto, Kohei Nishimura, & Hajime Ono. 2003. Unveiling the unmarkedness of Sino-Japanese. *Japanese/Korean Linguistics* 12: 140–151.
- Kiparsky, Paul. 1968. How abstract is phonology? In Osamu Fujimura (ed.), *Three dimensions of linguistic theory*, 5-56. Tokyo.
- Martin, Samuel E. 1952. Morphophonemics of standard colloquial Japanese. *Language* 28: 7–115.
- Mathesius, Vilém. 1934. Zur synchronischen Analyse fremden Sprachguts. *Englische Studien* 70: 21-35. Reprinted in Josef Vachek (ed.). 1964. *A Prague School reader in Linguistics*, 398-412. Bloomington: Indiana University Press.

McCarthy, John. 2000. The prosody of phase in Rotuman. *NLLT* 18: 147–197.

McCarthy, John, & Alan Prince. 1993. Generalized alignment. *Yearbook of Morphology* 1993: 79–153.

- McCarthy, John, & Alan Prince. 1995. Faithfulness and reduplicative identity. In Jill Beckman et al.(eds.), *Papers in Optimality Theory*, 250-384. Amherst: GLSA.
- McCawley, John D. 1968. *The phonological component of a grammar of Japanese*. The Hague: Mouton.
- Moreton, Elliott, & Shigeaki Amano. 1999. Phonotactics in the perception of Japanese vowel length: Evidence for long-distance dependencies. *Proceedings of the 6th European Conference on Speech Communication and Technology;* Budapest.
- Pater, Joe. 2001. Austronesian nasal substitution revisited. In Linda Lombardi (ed.), Segmental phonology in Optimality Theory: Constraints and representations, 159-182. Cambridge: CUP.
 Pinta, Justin. 2013. Lexical strata in loanword phonology: Spanish loans in Guarani. MA thesis, UNC-CH.
- Postal, Paul M. 1968. Aspects of phonological theory. New York: Harper and Row.
- Prince, Alan, & Paul Smolensky. 1993. *Optimality Theory: Constraint interaction in generative grammar*. Ms., Rutgers U. and U. of Colorado, Boulder. [Malden, Mass.: Blackwell, 2004.]
 Saciuk, Bohdan. 1969. The stratal division of the lexicon. *Papers in Linguistics* 1: 464-532.

Smith, Jennifer L. 2018. Stratified faithfulness in Harmonic Grammar and emergent coreperiphery structure. In Ryan Bennett et al. (eds.), *Hana-bana: A Festschrift for Junko Ito and*

Armin Mester, article #13. [https://itomestercelebration.sites.ucsc.edu/]

- Smith, Jennifer L., & Elliott Moreton. 2012. Sonority variation in Stochastic Optimality Theory: Implications for markedness hierarchies. In Steve Parker (ed.), *The sonority controversy*, 167-194. Berlin: De Gruyter Mouton.
- Smith, Jennifer L., & Justin Pinta. 2015. Experimental evidence for aggressive core-periphery phonology in Guarani. Presented at the 23rd Manchester Phonology Meeting, May 29.
 Smith, Jennifer L., & Yuka Tashiro. 2019. Nonce-loan judgments and impossible-nativization effects in Japanese. *Proceedings of the Linguistic Society of America* 4: article #26.
 Tanaka, Yu, & Yugiri Fujita. 2020. Phonological cues to Sino-Japanese words. Paper presented at LSA 2020; New Orleans, January 4.

Appendix 1: Why the StratFaith model needs "Ranking Consistency"

- (57) The classic approach: the **OT Stratified Faithfulness** model (Fukazawa 1997; Fukazawa, Kitahara, & Ota 1998; Ito & Mester 1999b, 2008)
 - If a stratified phonological grammar is productive:
 - (a) There is a markedness hierarchy M1 » M2 » M3 » ...
 - (b) Faithfulness constraints are stratum-specific, and are ranked low for core strata and increasingly higher toward the periphery
 - (c) F effects "move up" through the M hierarchy in peripheral strata
 M1 » F-periph » M2 » F-intermediate » M3 » F-core
 - Core stratum satisfies M1, M2, M3
 - Intermediate stratum satisfies M1, M2
 - Peripheral stratum satisfies M1

M3 can be violated M2, M3 can be violated

- (58) IN effects and M domination patterns (Ito & Mester 1999, 2001)
 - (a) In a language with <u>productive</u> stratified phonology, with M₁ » M₂ » M₃
 - (b) ...there is no stratum where M₃ is enforced but M₂ is not
 - (c) For a loan that violates both M₂ and M₃, a nativization that is unfaithful in order to satisfy <u>M₃</u> but still violates <u>M₂</u> is predicted to be ungrammatical
 - Such a form is therefore called an *impossible nativization*

- (59) But!! It turns out that the Stratified Faithfulness model **can't exclude** a grammar that allows the 'impossible nativization' ranking (Ito & Mester 1999)
 - Our schematic example would have:

- (60) Markedness constraints
 - (a) NoCoda Assign * for every syllable with a coda (Prince & Smolensky 1993)
 - (b) FINALSTRESS Assign * for every word that does not have stress on the final syllable (ALIGN-R(PrWd, head syll); McCarthy & Prince 1993)
- (61) Faithfulness constraints
 - (a) Max No deletion: Assign * for every input segment that has no output correspondent (McCarthy & Prince 1995)
 - (b) STRESS FAITH No stress shift; NoFLOP (Alderete 1999); HEAD MATCH (McCarthy 2000)

(62) Markedness/faithfulness rankings for the schematic language *nativized?*

(a)	<u>NoCoda</u> » Max <i>Native</i>	<u>FINALSTRESS</u> » STRESSFAITH <i>Native</i>	both
(b)	<u>NoCoda</u> » Max <i>Intermed</i>	StressFaith <i>Intermed</i> » <u>FinalStress</u>	only codas
(C)	MaxForeign » <u>NoCoda</u>	StressFaith <i>Foreign</i> » <u>FinalStress</u>	neither

(63) What it means to have an impossible-nativization effect here:

• There must be no stratum *LS* where only stress is nativized

(64) Problem: Even with NoCoda » FINALSTRESS, we can generate this stratum LS

Max*LS* » <u>NoCoda</u> <u>FinalStress</u> » StressFaith*LS*

| only stress nativized

• Does not contradict any rankings from (62)

(65) Demonstration of problem: Winner violates NoCoda, satisfies FINALSTRESS

/pálti/ <i>LS</i>	Max <i>ls</i>	NoCoda	FinalStress	StrFaith <i>LS</i>
→ a. pal.tí		*		*
b. pa.tí	* _W	L		*
c. pál.ti		*	* _W	L
d. pá.ti	* _W	L	*(w)	L

(66) Conceptually, the solution is to ensure that there can be no stratum *LS* with the ranking Max*LS* » STRESSFAITH*LS*

- (67) Ranking Consistency (Ito & Mester 1999: 82; see also Fukazawa et al. 1998)
 - Let F and G be two types of IO-faithfulness constraints [MAX, STRESSFAITH].
 - Then the relative rankings of the indexed versions of F and G are the same across all strata: $\forall AB (F_A \gg G_A) \Rightarrow (F_B \gg G_B)$

Appendix 2: Constraint defnitions and stratum-specific alternations

(after Ito & Mester 1995b)

(68) NoNT Assign one * for every sequence of [+nasal] [-voice] ('No nasal-voiceless obstruent sequences'); Hayes (1999), Pater (2001)

Satisfied in N; violations found in SJ, AF, UF
 (a) <u>Constraint satisfied</u> (I&M 1999: 68)
 (b) <u>Violations tolerated</u> (I&M 1999: 69)

 $/si\underline{\mathbf{n}}+\underline{\mathbf{t}}a/_{NAT}$ 'die-past' \rightarrow [$ci\underline{\mathbf{nd}}a$]

computer [kə**mp**jutı] → [ko**mp**juuutaa]

 $/hu\underline{\mathbf{m}} + \underline{\mathbf{k}}ir \cdot u/_{NAT} \rightarrow [\phi u \underline{\mathbf{ng}}iru]$ Santa $[sæ\underline{\mathbf{nt}} =] \rightarrow [sa\underline{\mathbf{nt}} =]$ 'step-cut-nonpast' 'make up one's mind' (69) NoP Assign one * for every singleton (non-geminate) [p]

Satisfied in N, SJ; violations found in AF, UF
 (a) <u>Constraint satisfied</u> (I&M 1999: 67,75)
 (b) <u>Violations tolerated</u> (I&M 1999: 74,75)

/ p an/ _{sj} 'group'; cf. /it+ p an/ 'group one'		[<u>h</u> an]; cf. [i pp an]	<i>pan</i> 'bread' (<portuguese)< th=""><th>[pão]</th><th>\rightarrow</th><th>[рам]</th></portuguese)<>	[p ão]	\rightarrow	[р ам]
/ja (p)p ari/ _{NAT} 'after all'	\rightarrow	[ja pp ari] ~[ja h ari]	pet	[p ɛt]	\rightarrow	[p etto]

(70) NoDD Assign one * for every voiced geminate obstruent

 Satisfied in N, SJ, AF; violations found in in UF (a) <u>Constraint satisfied</u> (I&M 1999: 67) (b) <u>Violations tolerated</u> (I&M 1995b: 819) $/o\underline{w+d}as+u/_{NAT} \rightarrow [o\underline{nd}asu]$ dog [dɔ**ɡ**] \rightarrow [do**<u>a</u><u>a</u><u>u</u>]** 'chase-put.out-NONPAST'; 'drive out'; cf. /o<u>w+k</u>ake+ru/_{NAT} cf. [o<u>kk</u>akerɯ] 'chase-run-nonpast' 'run after' → [ba<u>kk</u>ɯ] bag [bæ**g**] bed [bɛ<u>d]</u> [be<u>**dd</u>o]</u>** \rightarrow

(71) NoTI Assign one * for every sequence of [cor, -son, -cont] [i] ('Coronal plosives are palatal before [i]')

- Ito & Mester's (1995b) NoTI (*TI) penalizes all coronal obstruents + [i]
- Satisfied in N, SJ, AF; violations found in UF

(a) <u>Constraint satisfied</u> (I&M 1995b: 828) (b) <u>Violations tolerated</u> (I&M 1995b: 828)

team	[<u>ti</u> m]	→ [<u>tcii</u> mɯ]	teen	[<u>ti</u> n]	→ [<u>tii</u> n]
ticket	[<u>tı</u> kət]	→ [<u>tci</u> ketto]	party	[pɑ(ɹ) <u>ti]</u>	→ [paa <u>tii]</u>

- (72) NoSI Assign one * for every sequence of [cor, -son, +cont] [i] ('Coronal fricatives are palatal before [i]')
 - Satisfied in nearly all forms, including UF

 (a) <u>Constraint satisfied</u> (I&M 1995b: 828)
 (b) <u>Violations tolerated</u>? (I&M 1999: 77; Irwin 2011: 84)

cinema	[<u>sı</u> nəmə] →	[<u>ci</u> nema]	Citibank	[<u>sı</u> tibæŋk]	\rightarrow	[ci tibaŋkɯ] ~ ?[si tibaŋkɯ]
dressing	[dıɛ <u>sı</u> ŋ] →	[dore <u>ci</u> ngɯ]	season	[<u>si</u> :zən]	\rightarrow	[<u>ci</u> :zɯn] ~ [<u>si</u> :zɯn] (sports commentators)

 Ito & Mester (1999: 77) and Irwin (2011: 84) observe that potential violations of NoSI in even very recent loans are nearly always nativized

Appendix 3: GLA results are consistent over the 5 runs

- (73) Confirm: Ranking values per participant consistent?
 - Two groups: low vs. high *ranking-value spread* per constraint across the 5 runs
 - Low vs. high spread reflects *range* of ranking values <u>across</u> constraints

Range 2.72–8.08, *low* max spread ≤0.106 | Range ≥13.45, *high* max spread 0.326–1.18

• Re: generous 'domination' criterion: Only 3 participants had max spread > 0.85 (interval >1.9)

Appendix 4: Hand-ranked grammars

 (74) Hand-ranked grammar for participant ek74 (number of 2:2 pairs = 0) NoSI » NoTI/4 NoSI » NoDD/4 NoSI » NoP/3 NoNT » NoSI/3 NoDD » NoTI/3 NoP » NoTI/3 NoTI » NoNT/3 NoDD » NoP/4 NoDD » NoNT/3

NoNT » NoP/4

- Consistent: NoSI » NoDD » NoP » NoTI
- NoNT inconsistent: High? NoNT » NoSI (and NoNT » NoP)

- Low? NoTI » NoNT (and NoDD » NoNT)

 (75) Hand-ranked grammar for participant fq02 (number of 2:2 pairs = 2) NoSI » NoTI/3 NoSI » NoDD/4 NoSI=NoP/2 NoSI » NoNT/3 NoDD » NoTI/3 NoTI » NoP/3 NoNT » NoTI/4 NoDD » NoP/3 NoNT » NoDD/3

NoP=NoNT/2

- Consistent: NoSI » NoNT » NoDD » NoTI
- NoP inconsistent: High? NoSI=NoP (and NoP=NoNT)
 - Low? NoTI » NoP (and NoDD » NoP)

(76) Hand-ranked grammar for participant nm68 (number of 2:2 pairs = 2) NoSI » NoTI/3 NoSI » NoDD/3 NoSI » NoP/3 NoSI=NoNT/2 NoTI » NoDD/3 NoP » NoTI/3 NoNT » NoTI/4 NoDD » NoP/3 NoDD=NoNT/2 NoNT » NoP/4

- Consistent (with tie): {NoSI, NoNT} » NoP » NoTI
- NoDD inconsistent: High? NoDD=NoNT and NoDD » NoP
 - Low? NoTI » NoDD (and NoSI » NoDD)

- Consistent: NoSI » NoNT » NoTI » NoP
- NoDD inconsistent: High? NoSI=NoDD (and NoTI=NoDD)

- Low? NoDD=NoP (and NoNT » NoDD)

(78) Hand-ranked grammar for participant **qh64** (number of 2:2 pairs = 3) NoSI » NoTI/4 NoSI=NoDD NoSI » NoP/4 NoSI » NoNT/3 NoTI=NoDD NoTI » NoP/3 NoTI=NoNT NoDD » NoP/3 NoNT » NoDD/3 NoNT » NoP/3 NoNT » NoP/3

- Consistent (with tie): NoSI » { NoTI, NoNT } » NoP
- NoDD inconsistent: High? NoSI=NoDD (and NoTI=NoDD)
 - Low? NoNT » NoDD

- Consistent (with tie): NoSI » NoNT » { NoTI, NoP }
- NoDD inconsistent: High? NoSI=NoDD (and NoDD » NoNT)
 - Low? NoTI=NoDD