

Practice with phonological rules

Natural classes in rules

Background preparation:

• CL Ch 3: sec 1 and Appendix (pp 107–109)

0. Course information

- HW #3 is due
 - Please put it in the pile on the table that is labeled with your TA's name & recitation number
 - Make sure your recitation number is visible on your homework paper!

Yuhan (10:10) —601 Esther (10:10) —602 Esther (11:15) —603 Yuhan (11:15) —604 Upcoming schedule:

- W Sept 20 \rightarrow Child phonology (and implications for our model of human language)
- F Sept 22 (rec), W Sept 27 \rightarrow We start a new unit
 - This material will be on Exam #2, *not Exam #1*
- M Sept 25 is a well-being day
 - HW #4 (assigned this W) due <u>W</u> Sept 27
- Recitation F Sept 29 \rightarrow review for Exam #1
- Exam #1 on M Oct 2

- Which are <u>strong</u> evidence that segments (phones)
 1 and 2 are **allophones of the same phoneme**?
 - a. There is **at least one minimal pair** for 1 and 2 in your data set
 - b. There are **no minimal pairs** for 1 and 2 in your data set
 - c. The **environments** where 1 vs. 2 occur are **predictable**
 - d. The **environments** where 1 vs. 2 occur are **unpredictable**

Step 1. Can you find one or more minimal pairs?

- What do you conclude if the answer is...
- YES \rightarrow
- NO \rightarrow

Step 1. Can you find one or more minimal pairs?

- What do you conclude if the answer is...
- YES \rightarrow Contrast. **<u>Different</u> phonemes**.
- NO \rightarrow (Not enough information yet. Keep going.)

Step 2. What is the relationship between the segments' environments?

• What do you conclude if the answer is...

 $\mathsf{PREDICTABLE} \rightarrow$

UNPREDICTABLE -

Step 2. What is the relationship between the segments' environments?

PREDICTABLE → Allophones of the <u>same</u> phoneme.

Non-overlapping environments. It is *predictable* from the environment which segment you get, so the mental grammar is responsible.

• Also known as <u>complementary</u> distribution; the allophones are *dividing up* the set of environments

UNPREDICTABLE \rightarrow Contrast. **<u>Different</u> phonemes**.

Overlapping environments; <u>contrastive</u> distribution; Not the job of the grammar.

• True or false: The environments of [l] and [r] in this data set are **unpredictable** (overlapping; non-distinct)

[1]		[1]			
ko	а	bee	а		
0	ulimi	e	jato		
olu	imi	effi	imbi		
#	agira	lagi	а		
eddwa	iro	eddwali	0		

These words are from Ganda (Bantu; Uganda) [r] is a voiced alveolar oral flap liquid

• True or false: The environments of [1] and [r] in this data set are **unpredictable** (overlapping; non-distinct)

[1]		[.	[ſ]			
ko	а	bee	a			
0	ulimi	e	jato			
olu	imi	effi	imbi			
#	agira	lagi	а			
eddwa	iro	eddwali	0			

• False! The environments are **predictable**

- Is this a **good** characterization of the environments?
 - [1] occurs in word-initial position, and [r] occurs before a glide.

- Is this a **good** characterization of the environments?
 - [1] occurs in word-initial position, and [r] occurs before a glide. | No! (Do you see why not?)

[1]		[[ſ]		
ko	а	bee	а		
0	ulimi	e	jato		
olu	imi	effi	imbi		
#	agira	lagi	а		
eddwa	iro	eddwali	0		

- Is this a good characterization of the environments?
 - [l] occurs before vowels.

- Is this a good characterization of the environments?
 - [l] occurs before vowels. | **No!** (Do you see why not?)

- Fill in the blanks:
 - [r] occurs after _____ vowels. [l] occurs _____

Some points to note about stating distinct environments for allophones 1 and 2:

- Think carefully about natural classes!
 - [l] and [r] both occur "after vowels" in Ganda
 - But don't give up and conclude the environments are overlapping until you check whether they occur after the *same kinds* of vowels

Some points to note about stating distinct environments for allophones 1 and 2:

- To be able to state "1 occurs in environment X"...
 - Environment X must <u>always</u> be true for 1
 - Environment X must <u>never</u> be true for 2

If these conditions are not met, then the environment you have stated is **not** the crucial factor that determines when allophones 1 and 2 appear — try again!

- When one phoneme has multiple allophones, the mental grammar must contain phonological rule(s) to determine where each allophone appears
- (1) Choose one allophone as the **<u>basic</u>** one
 - Which allophone is basic for Ganda? Why?
- (2) The **basic** allophone is the "name" of the phoneme
- (3) For each <u>non</u>-basic allophone of the phoneme,write a phonological rule using sound properties

$$A \rightarrow B / X _ Y$$

- Suppose we find the following predictable distribution for two segments we are analyzing:
 - [b] occurs between vowels
 - [p] occurs elsewhere
- True or false: This is a good rule to propose $/p/ \rightarrow [b] / vowel _ vowel$

- Suppose we find the following predictable distribution for two segments we are analyzing:
 - [b] occurs between vowels
 - [p] occurs elsewhere
- True or false: This is a good rule to propose $/p/ \rightarrow [b] / vowel _ vowel$
 - False. Rules must be stated in terms of properties!

- **All** phonological rules should be written using properties, even when they only affect one sound
 - \rightarrow Why?
 - *Theory-based reason:* We have proposed that what the mental grammar refers to is not segments, but **properties**; since phonological rules are part of the mental grammar, they must refer to properties
 - But also Using properties gives us *better insight* into phonological phenomena

- Getting started: $/p/ \rightarrow [b] / vowel _ vowel$
- /p/ = voiceless bilabial stop
 - It is also oral. Should we mention this?
 - 'Oral' is *not needed* to **uniquely identify** [p]
 from among the sounds in our data set
- Revise rule:

voiceless bilabial stop \rightarrow [b] / vowel ____ vowel

- But how do we write the " \rightarrow [b]" part?

• True or false: This is the best final form of our rule

voiceless	\rightarrow	voiced	/	vowel_	_vowel
bilabial		bilabial			
stop		stop			

• True or false: This is the best final form of our rule

voiceless	\rightarrow	voiced	/	vowel_	_vowel
bilabial		bilabial			
stop		stop			

- False!
 - What **<u>changes</u>** when /p/ becomes [b]?
 - This change is what our rule needs to specify
- Final form of the /p/-to-[b] rule:
 voiceless bilabial stop → voiced / vowel ____ vowel

- *Why* only write the changed property (properties)?
 - It's **not** the case that one sound is being arbitrarily deleted and replaced with some other random sound; instead, a minor **change** is being made to the sound
 - More evidence, coming right up

- Suppose we find three very similar rules in the same language:
 - [p]-[b] vcls bilab stop → voiced / vowel __vowel
 - [t]-[d] vcls alv stop \rightarrow voiced / vowel ____ vowel
 - [k]-[g] vcls velar stop → voiced / vowel __ vowel
- Are these really three *separate* rules at all? Or is the *same thing* going on in each case?

- Are these really three *separate* rules at all? Or is the *same thing* going on in each case?
- What's actually happening here: A general process is applying to all voiceless stops, making them voiced when they occur between vowels
- We can write one general rule to capture this:

vcls stop → voiced / vowel _ vowel

- But this *only works* because rules refer to sound properties!

- Suppose the same language also has this rule:
 [s]-[z] rule:
 vcls alv fricative → vcd / vowel ___ high vowel
- Can this fricative rule be treated as part of the same general rule as the stops?

General rule:

vcls stop \rightarrow vcd / vowel ____ vowel

- The environments
 - General rule: ... / vowel __ vowel
 - [s]-[z] rule: ... / vowel __ high vowel
- The environment for the [s]-[z] rule is currently similar, but more specific
 - Does it have to be?
 - Check the data set: Does our [s]-[z] rule make *wrong* predictions if it says "/ vowel __ vowel"?
 - If not, we can state the [s]-[z] environment in this more general (and insightful?) form

- The sounds affected by the rule
 - General rule: vcls stops
 - [s]-[z] rule: vcls alveolar fricative
- Can we state this as a single natural class with shared properties?
 [ptk] plus [s]: ???

- The sounds affected by the rule
 - General rule: vcls stops
 - [s]-[z] rule: vcls alveolar fricative
- Can we state this as a single natural class with shared properties?

[ptk]plus[s]: ???

- What if we state the rule so that it affects <u>all voiceless sounds</u>?
- As long as there are **no counterexamples** in the data set, this is an **insightful** approach

Our final analysis would be:

- [p]-[b], [t]-[d], [k]-[g] vcls stop \rightarrow voiced / vowel __vowel
- [s]-[z]
 vcls alv fric → voiced / vowel __vowel

Generalized rule:

voiceless → voiced / vowel _ vowel

5. Summary: Rules and natural classes

- Stating rules in terms of properties:
 - highlights what **actual changes** are occurring
 - helps us identify cases with **one general rule** affecting whole **natural classes** of sounds

 Both of these advantages would be lost in a model of the mental grammar that did *not* include sound properties

5. Summary: Rules and natural classes

Techniques to use

• For phonology:

Always be as **general** as possible when you state the properties of a sound or sound class

- This most effectively emphasizes what's important about a pattern
- This makes it easier to find generalizations across multiple individual sounds
- <u>Warning</u> This is different than for phonetics:
 When asked to fully describe a sound, be able to state all of its properties (see C, V phonetics slides)

5. Summary: Rules and natural classes

What properties can we use in writing rules?

- C properties (that we learned for phonetics):
 - voicing, oral/nasal, place, (lateral/retroflex), constriction type
- V properties (that we learned for phonetics):
 - height, backness, rounding, tense/lax
 - *(when relevant)* **voicing, oral/nasal**
- Other useful properties (see *CL*, Ch 2 and Ch 3):
 - vowel vs. consonant
 - obstruent vs. sonorant
 - strident (or sibilant) vs. non-strident (non-sib.)

Child acquisition — Phonology

- We will look at how children acquiring a native language develop their phonological grammar
- In particular: Can we test our model of the mental grammar by checking its predictions about child phonology?