LING 101 • Lecture outline
 M Sept 18

- Practice with phonological rules Natural classes in rules

Background preparation:

- CL Ch 3: sec 1 and Appendix (pp 107-109)

0. Course information

- HW \#3 is due
- Please put it in the pile on the table that is labeled with your TA's name \& recitation number
- Make sure your recitation number is visible on your homework paper!

$$
\begin{array}{ll}
\text { Yuhan } & (10: 10)-601 \\
\text { Esther } & (10: 10)-602 \\
\text { Esther } & (11: 15)-603 \\
\text { Yuhan } & (11: 15)-604
\end{array}
$$

0. Course information

Upcoming schedule:

- W Sept $20 \rightarrow$ Child phonology (and implications for our model of human language)
- F Sept 22 (rec), W Sept $27 \rightarrow$ We start a new unit
- This material will be on Exam \#2, not Exam \#1
- M Sept 25 is a well-being day
- HW \#4 (assigned this W) due W Sept 27
- Recitation F Sept $29 \rightarrow$ review for Exam \#1
- Exam \#1 on M Oct 2

1. Review: Same or different phonemes?

- Which are strong evidence that segments (phones) 1 and 2 are allophones of the same phoneme?
a. There is at least one minimal pair for 1 and 2 in your data set
b. There are no minimal pairs for 1 and 2 in your data set
c. The environments where 1 vs. 2 occur are predictable
d. The environments where 1 vs. 2 occur are unpredictable

1. Review: Same or different phonemes?

Step 1. Can you find one or more minimal pairs?

- What do you conclude if the answer is...

YES \rightarrow
$\mathrm{NO} \quad \rightarrow$

1. Review: Same or different phonemes?

Step 1. Can you find one or more minimal pairs?

- What do you conclude if the answer is... YES \rightarrow Contrast. Different phonemes.
no \rightarrow (Not enough information yet. Keep going.)

1. Review: Same or different phonemes?

Step 2. What is the relationship between the segments' environments?

- What do you conclude if the answer is... PREDICTABLE \rightarrow

UNPREDICTABLE \rightarrow

1. Review: Same or different phonemes?

Step 2. What is the relationship between the segments' environments? predictable \rightarrow Allophones of the same phoneme.

Non-overlapping environments. It is predictable from the environment which segment you get, so the mental grammar is responsible.

- Also known as complementary distribution; the allophones are dividing up the set of environments unpredictable \rightarrow Contrast. Different phonemes.

Overlapping environments; contrastive distribution; Not the job of the grammar.

2. Practice: Analyzing environments

- True or false: The environments of [1] and [r] in this data set are unpredictable (overlapping; non-distinct)

$[1]$	$[r]$		
ko	a	bee	a
o	ulimi	e	jato
olu	imi	effi	imbi
$\#$	agira	lagi	a
eddwa	iro	eddwali	o

These words are from Ganda (Bantu; Uganda) [r] is a voiced alveolar oral flap liquid

2. Practice: Analyzing environments

- True or false: The environments of [1] and [r] in this data set are unpredictable (overlapping; non-distinct)

$[1]$	$[r]$		
ko	a	bee	a
o	ulimi	e	jato
olu	imi	effi	imbi
\#	agira	lagi	a
eddwa	iro	eddwali	0

- False! The environments are predictable

2. Practice: Analyzing environments

- Is this a good characterization of the environments?
- [l] occurs in word-initial position, and [r] occurs before a glide.

$[1]$	$[r]$		
ko	a	bee	a
o	ulimi	ef	jato
olu	imi	effi	imbi
$\#$	agira	lagi	a
eddwa	iro	eddwali	o

2. Practice: Analyzing environments

- Is this a good characterization of the environments?
- [l] occurs in word-initial position, and [r] occurs before a glide. | No! (Do you see why not?)

$[1]$	$[\mathrm{r}]$		
ko	a	bee	a
o	ulimi	e	jato
olu	imi	effi	imbi
$\#$	agira	lagi	a
eddwa	iro	eddwali	o

2. Practice: Analyzing environments

- Is this a good characterization of the environments?
- [l] occurs before vowels.

$[1]$	$[r]$		
ko	a	bee	a
o	ulimi	e	jato
olu	imi	effi	imbi
$\#$	agira	lagi	a
eddwa	iro	eddwali	o

2. Practice: Analyzing environments

- Is this a good characterization of the environments?
- [1] occurs before vowels. | No! (Do you see why not?)

$[1]$	$[r]$		
ko	a	bee	a
o	ulimi	e	jato
olu	imi	effi	imbi
$\#$	agira	lagi	a
eddwa	iro	eddwali	o

2. Practice: Analyzing environments

- Fill in the blanks:
- [r] occurs after \qquad vowels. [1] occurs \qquad -

$[1]$	$[r]$		
ko	a	bee	a
0	ulimi	e	jato
olu	imi	effi	imbi
\#	agira	lagi	a
eddwa	iro	eddwali	o

2. Practice: Analyzing environments

Some points to note about stating distinct environments for allophones 1 and 2:

- Think carefully about natural classes!
- [l] and [r] both occur "after vowels" in Ganda
- But don't give up and conclude the environments are overlapping until you check whether they occur after the same kinds of vowels

2. Practice: Analyzing environments

Some points to note about stating distinct environments for allophones 1 and 2:

- To be able to state "1 occurs in environment X"...
- Environment X must always be true for 1
- Environment X must never be true for 2

If these conditions are not met, then the environment you have stated is not the crucial factor that determines when allophones 1 and 2 appear - try again!

3. Practice: Phonological rules

- When one phoneme has multiple allophones, the mental grammar must contain phonological rule(s) to determine where each allophone appears
(1) Choose one allophone as the basic one
- Which allophone is basic for Ganda? Why?
(2) The basic allophone is the "name" of the phoneme
(3) For each non-basic allophone of the phoneme, write a phonological rule using sound properties

$$
\mathrm{A} \rightarrow \mathrm{~B} / \mathrm{X}_{_} \mathrm{Y}
$$

3. Practice: Phonological rules

- Suppose we find the following predictable distribution for two segments we are analyzing:
- [b] occurs between vowels
- [p] occurs elsewhere
- True or false: This is a good rule to propose

$$
/ \mathrm{p} / \rightarrow[\mathrm{b}] / \text { vowel __ vowel }
$$

3. Practice: Phonological rules

- Suppose we find the following predictable distribution for two segments we are analyzing:
- [b] occurs between vowels
- [p] occurs elsewhere
- True or false: This is a good rule to propose $/ \mathrm{p} / \rightarrow[\mathrm{b}]$ / vowel _ vowel
- False. Rules must be stated in terms of properties!

3. Practice: Phonological rules

- All phonological rules should be written using properties, even when they only affect one sound \rightarrow Why?
- Theory-based reason: We have proposed that what the mental grammar refers to is not segments, but properties; since phonological rules are part of the mental grammar, they must refer to properties
- But also - Using properties gives us better insight into phonological phenomena

3. Practice: Phonological rules

- Getting started:

$$
/ \mathrm{p} / \rightarrow[\mathrm{b}] / \text { vowel __ vowel }
$$

- /p/ = voiceless bilabial stop
- It is also oral. Should we mention this?
- ‘Oral’ is not needed to uniquely identify [p] from among the sounds in our data set
- Revise rule:
voiceless bilabial stop \rightarrow [b] / vowel __ vowel
- But how do we write the " \rightarrow [b]" part?

3. Practice: Phonological rules

- True or false: This is the best final form of our rule voiceless \rightarrow voiced / vowel _ vowel bilabial bilabial stop stop

3. Practice: Phonological rules

- True or false: This is the best final form of our rule voiceless \rightarrow voiced / vowel__vowel bilabial bilabial stop stop
- False!
- What changes when /p/ becomes [b]?
- This change is what our rule needs to specify
- Final form of the /p/-to-[b] rule: voiceless bilabial stop \rightarrow voiced / vowel _ vowel

3. Practice: Phonological rules

- Why only write the changed property (properties)?
- It's not the case that one sound is being arbitrarily deleted and replaced with some other random sound; instead, a minor change is being made to the sound
- More evidence, coming right up

4. Generalizing a rule

- Suppose we find three very similar rules in the same language:
[p]-[b] vcls bilab stop \rightarrow voiced/vowel _ vowel
[t]-[d] vcls alv stop \rightarrow voiced/vowel __ vowel
[k]-[g] vcls velar stop \rightarrow voiced/vowel _ vowel
- Are these really three separate rules at all? Or is the same thing going on in each case?

4. Generalizing a rule

- Are these really three separate rules at all? Or is the same thing going on in each case?
- What's actually happening here: A general process is applying to all voiceless stops, making them voiced when they occur between vowels
- We can write one general rule to capture this: vcls stop \rightarrow voiced / vowel _ vowel
- But this only works because rules refer to sound properties!

4. Generalizing a rule

- Suppose the same language also has this rule:
[s]-[z] rule:
vcls alv fricative \rightarrow vcd / vowel _ high vowel
- Can this fricative rule be treated as part of the same general rule as the stops?

General rule:
vcls stop
\rightarrow vcd / vowel __ vowel

4. Generalizing a rule

- The environments
- General rule: ... / vowel __ vowel
- [s]-[z] rule: ... / vowel _ high vowel
- The environment for the [s]-[z] rule is currently similar, but more specific
- Does it have to be?
- Check the data set: Does our [s]-[z] rule make wrong predictions if it says "/ vowel __ vowel"?
- If not, we can state the [s]-[z] environment in this more general (and insightful?) form

4. Generalizing a rule

- The sounds affected by the rule
- General rule: vcls stops
- [s]-[z] rule: vcls alveolar fricative
- Can we state this as a single natural class with shared properties?
[ptk] plus [s]: ???

4. Generalizing a rule

- The sounds affected by the rule
- General rule: vcls stops
- [s]-[z] rule: vcls alveolar fricative
- Can we state this as a single natural class with shared properties?
[ptk] plus [s]: ???
- What if we state the rule so that it affects all voiceless sounds?
- As long as there are no counterexamples in the data set, this is an insightful approach

4. Generalizing a rule

Our final analysis would be:

- [p]-[b], [t]-[d], [k]-[g]
vcls stop \rightarrow voiced / vowel __ vowel
- [s]-[z]
vcls alv fric \rightarrow voiced / vowel __ vowel

Generalized rule:
voiceless \rightarrow voiced / vowel __ vowel

5. Summary: Rules and natural classes

- Stating rules in terms of properties:
- highlights what actual changes are occurring
- helps us identify cases with one general rule affecting whole natural classes of sounds
- Both of these advantages would be lost in a model of the mental grammar that did not include sound properties

5. Summary: Rules and natural classes

Techniques to use

- For phonology:

Always be as general as possible when you state the properties of a sound or sound class

- This most effectively emphasizes what's important about a pattern
- This makes it easier to find generalizations across multiple individual sounds
- Warning - This is different than for phonetics: When asked to fully describe a sound, be able to state all of its properties (see C, V phonetics slides)

5. Summary: Rules and natural classes

What properties can we use in writing rules?

- C properties (that we learned for phonetics):
- voicing, oral/nasal, place, (lateral/retroflex), constriction type
- V properties (that we learned for phonetics):
- height, backness, rounding, tense/lax
- (when relevant) voicing, oral/nasal
- Other useful properties (see CL, Ch 2 and Ch 3):
- vowel vs.consonant
- obstruent vs. sonorant
- strident (or sibilant) vs. non-strident (non-sib.)

6. For next time

Child acquisition — Phonology

- We will look at how children acquiring a native language develop their phonological grammar
- In particular: Can we test our model of the mental grammar by checking its predictions about child phonology?

