

Child language acquisition Acquisition of phonology

Background reading:

- CL Ch 9, chapter intro
- CL Ch 9, §1, "The study of language acquisition"
- CL Ch 9, §2, "Phonological development"

- Scientific investigation:
 - Observe **data** (phenomena in the natural world)
 - Build a **model** to describe, understand the data
 - **Test** the model:
 - What predictions does it make?
 - What happens when we test those predictions against new data?
 → Is the model supported?
 → Or does it need to be changed?

In linguistics:

- **Data** = human language behavior
 - **Naturalistic** observe what naturally occurs
 - How people speak and understand
 - The environments where segments occur
 - (etc.)
 - **Experimental** create situations, collect responses
 - Ask speakers for grammaticality judgments
 - Lab experiments (production, perception)
 - (etc.)

- We want to build a model of both
 - the **mental grammar** of the speakers of a certain language, specifically
 - the **range of possibilities** of human mental grammars, in general
- Our current model includes
 - sound **properties** (building blocks of segments)
 - **phonemes** (stored in memory; mental)
 - **allophones** (pronunced; physical)
 - **rules** to produce allophones in specific contexts

- Some things linguists hope to achieve by doing research on child language:
 - Can **applying our model** of mental grammar help us **explain** what happens during children's acquisition of their native language(s)?
 - Can **data** from children's developing language systems help us **test our model** of mental grammar?

- **A key idea:** "Learning" a native language is not the same as learning to do math or ride a bike
 - This is why the term **acquisition**, not "learning," is typically used for this process
- Children acquire their native language relatively
 easily and quickly (compared to adult language learning)
- Children do **not** acquire language by having their parents explicitly "teach" it to them
 - More about this in a later class

In our model of human language, we propose:

Children acquire language through contact between

- the **language data** in the environment
- the (universal) language acquisition mechanism of the **mental grammar**

- Adults can speak and understand their native language(s) because they have a lexicon and mental grammar of that language
 - How do these two pieces of the system relate to <u>predictable</u> and <u>unpredictable</u> information?

- Adults can speak and understand their native language(s) because they have a lexicon and mental grammar of that language
 - lexicon where sounds, meaning, and other <u>unpredictable</u> information are stored for each word (or morpheme; more on this in *CL* Ch 4)
 - mental grammar rules and principles that handle <u>predictable</u> / <u>systematic</u> patterns, including phonology

- Adults can speak and understand their native language(s) because they have a lexicon and mental grammar of that language
- How would a child acquiring a native language (first language; L1) get to this **target** adult state?
 - **lexicon** (unpredictable info):
 - **mental grammar** (rules for predictable info):

- Adults can speak and understand their native language(s) because they have a lexicon and mental grammar of that language
- How would a child acquiring a native language (first language; L1) get to this **target** adult state?
 - **lexicon**: unpredictable information must be learned and stored
 - **mental grammar**: How does this develop?
 - Any (normally developing) infant has the potential to develop the mental grammar of any language

- Proposal:
 - Infants all start out with their mental grammar at the same (**universal**) original/default settings: "Universal Grammar" (**UG**)
 - When infants are exposed to language data, they will begin to develop the mental grammar needed to produce and comprehend a particular adult language (the target language)

In this model, we can analyze each stage of a child's developing mental grammar with the same tools we use for adult languages

- A child in the process of acquiring a language goes through different **stages** of development
 - These stages reflect intermediate mental grammars on the way to the adult grammar
- A child often shows **variable** behavior
 - A rule may be applied only some of the time
 - Multiple versions of a rule may be in use
- But we can still find a great deal of **systematicity** in children's language behavior

- We can consider data about the stages children typically go through in developing their phonological system
 - Does our **model** of mental grammar help us understand this **data**?
 - Does this **data** help us test predictions and evaluate our **model** of the mental grammar?
- Note: The stages described here (especially the representative ages given) are average or general patterns; individual children may be somewhat different

- *Data:* **Distinguishing** different speech sounds
 - <u>6-8 months</u>: Infants can distinguish among almost all of the sound categories used in the world's languages
 - <u>10-12 months</u>: Infants now have difficulty distinguishing sound categories that are **not contrastive** in their target language
- *Analysis:* What does this change suggest about the child's mental grammar?

- *Data:* **Distinguishing** different speech sounds
 - <u>10-12 months</u>: Infants now have difficulty distinguishing sound categories that are **not contrastive** in their target language
- Analysis: This developmental change is evidence for the beginning of a language-specific phonological grammar
 - Children at this stage are developing an inventory of contrastive sounds (**phonemes**)

- *Data:* **Babbling** approximately 6 to 12 months
 - In babbling, an infant makes syllable-like noises that don't mean anything (they are not words)
 - This seems to be a kind of practice with articulation (and perception?) before the child's production of words begins

- *Data:* **Babbling** approximately 6 to 12 months
 - The most frequent consonants used in babbling are very consistent even for babies acquiring different languages

Table 9.1 from *CL*, p 353 | What generalizations can we make? **Cross-linguistic similarities in babbling**

Frequently found	Infrequently found
<mark>p b m</mark>	fvθð
t d n	<mark>∫ उ</mark> ⊈ तेर
k g	lr <mark>ŋ</mark>
<mark>s h</mark> <i>w j</i>	

Table 9.1 from *CL*, p 353 | What generalizations can we make? **Cross-linguistic similarities in babbling**

Frequently found	Infrequently found
p b m t d n k g <mark>s h <i>w j</i></mark>	fvθð ∫3t∫dz lrŋ

- Labials are common
- Oral and nasal **stops** are common, except [ŋ]
- Fricatives are rare, except [s, h]
- Liquids are rare but **glides** are common

- *Data:* **Babbling** approximately 6 to 12 months
 - The **most frequent consonants** used in babbling are very **consistent** across languages
 - The most frequent consonants used are also frequent sounds in **adult** languages
- *Analysis:* How can we explain these connections?

- *Data:* **Babbling** approximately 6 to 12 months
 - The **most frequent consonants** used in babbling are very **consistent** across languages
 - The most frequent consonants used are also frequent sounds in **adult** languages
- *Analysis:* How can we explain these connections?
 - Maybe these consonants are typically early and common because **UG prefers them**
 - But maybe it is because of **articulation and perception** factors that do *not* depend on UG
 - Or **both!** | This is an area of current research

- Data: Early word production Individual children develop differently, but some general patterns can be observed:
 - **Vowels** develop before consonants
 - **Stops** are usually the earliest consonants
 - **Labial** is usually the first place of articulation (note: sighted children only!)
 - New phoneme categories are often distinguished in **word-initial position** first
- Advanced research question:
 What factors might lead to these patterns?

- Young children's word pronunciations often lack the full set of sounds found in the adult language
- But in many cases, children are able to distinguish between phonemes they hear even before they can produce the difference themselves
 - How do we know this?
 - What are the implications for the child's **mental grammar**?

- *Data:* We often find that **comprehension** is more adult-like than **production**
 - Example: A child pronounces both *mouse* and *mouth* as [maws], but can point to the correct pictures in a comprehension experiment
- *Analysis:* What are the **implications** of this pattern for the child's developing mental grammar?

- *Data:* A child pronounces both *mouse* and *mouth* as [maws], but can point to the correct pictures in a comprehension experiment
- *Analysis:* What are the **implications** of this pattern?
 - How is each of these words represented in the child's **mental lexicon**?
 - •
 - •
 - How can we explain the child's **pronunciation**?

- *Data:* A child pronounces both *mouse* and *mouth* as [maws], but can point to the correct pictures in a comprehension experiment
- *Analysis:* What are the **implications** of this pattern?
 - How is each of these words represented in the child's **mental lexicon**?
 - 💱 /maws/
 - 🔄 /mawθ/
 - How can we explain the child's pronunciation in the case of [maws] ?

- If a child has an adult-like <u>phonemic</u> form, but produces a non-adult-like <u>phonetic</u> form...
 - Phonemic form: \bigcirc /maw θ /
 - Phonetic form: [maws]

- If a child has an adult-like <u>phonemic</u> form, but produces a non-adult-like <u>phonetic</u> form...
 - Phonemic form: \bigcirc /maw θ /
 - Phonetic form: [maws]
- The child's developing grammar must have a phonological rule that is not part of the adult grammar

- Writing child-specific phonological rules
 - Same as for adult phonological rules:
 - Rule format (A \rightarrow B / X _ Y)
 - Use of sound properties
 - One difference: A child-specific rule may have
 no environment if a certain natural class
 changes into something else *everywhere*
 - Rule in such a case is only "A \rightarrow B", no " / ..."
- *Mouth* example: A rule for $/maw\theta / \rightarrow [maws]$?

- Writing child-specific phonological rules
 - Same as for adult phonological rules:
 - Rule format (A \rightarrow B / X _ Y)
 - Use of sound properties
 - One difference: A child-specific rule may have
 no environment if a certain natural class
 changes into something else *everywhere*
 - Rule in such a case is only "A \rightarrow B", no " / ..."
- *Mouth* example: voiceless interdental → alveolar

- Example from A., age 1;11
 - (a)
 (b)
 (c)

 <u>cup</u>
 [tʌp]
 goat
 [dowt]
 dog
 [dot]

 <u>okay</u>
 [otej]
 <u>Grampa</u>
 [dæmpə]
 egg
 [ejt]

 fork
 [fɔut]
 digger
 [dudu]
 total
- What systematic patterns can we see here?
 (Hint: Think about phonetic properties and natural classes)
- What rule(s) should we propose for A. at this stage?

• Example from A., age 1;11

(a)(b)(c) $\underline{c}up$ $[\underline{t}np]$ $\underline{g}oat$ $[\underline{d}owt]$ dog $[do\underline{t}]$ $o\underline{k}ay$ $[o\underline{t}ej]$ $\underline{G}rampa$ $[\underline{d}ampa]$ egg $[ej\underline{t}]$ $for\underline{k}$ $[fou\underline{t}]$ digger $[du\underline{d}\mu]$ \cdot

- What systematic patterns can we see here?
 - /k/ produced as [t] in all positions
 - /g/ produced as [d] in initial and medial positions and as [t] in final position
- General rule?

• Example from A., age 1;11

(a)		(b)		(C)	
<u>c</u> up	[<u>t</u> ʌp]	goat	[<u>d</u> owt]	dog	[dɔ <u>t</u>]
o <u>k</u> ay	[o <u>t</u> ej]	<u>G</u> rampa	[<u>d</u> æmpə]	egg	[ej <u>t</u>]
for <u>k</u>	[fɔɹṯ]	digger	[dɪ <u>d</u> ɹ]		

- What systematic patterns can we see here?
 - /k/ produced as [t] in all positions
 - /g/ produced as [d] in initial and medial positions and as [t] in final position
- General rule? Velar stops \rightarrow alveolar

Apparently also: Voiced stops \rightarrow voiceless / _#

- A. **consistently** applied this rule until about age 2;6
 - Then 2 wks of variable [t]~[k] for /k/ (likewise /g/)
 Sometimes, A. would visibly correct her first production:
 "[tʌp]...[kʌp]"
 - After that, she settled on consistent [k] and [g]
 - Only one lexical item showed confusion about which phoneme it contained: *gear* [dia]

- A. **consistently** applied this rule until about age 2;6
 - Then 2 wks of variable [t]~[k] for /k/ (likewise /g/)
 Sometimes, A. would visibly correct her first production:
 "[tʌp]...[kʌp]"
 - After that, she settled on consistent [k] and [g]
 - Only one lexical item showed confusion about which phoneme it contained: *gear* [dia]
- Just for fun: A. at age 4;6, when I misheard what she said about a bad smell along the road on a hot day
 - "No, I didn't say *tar*, I said *car*! Not T-A-R. C-A-R."

- Just as with adult language data, we can classify child language data as either:
 - **Naturalistic** observe what naturally occurs
 - **Experimental** create situations, collect responses
- What are some of the advantages and disadvantages of each of these types of data?

• What are some of the advantages and disadvantages of each of these types of data?

Naturalistic	Experimental	
Taken from real life	× Artificial situation	
(is actual behavior)	(does behavior change?)	
× Can't control what kind	🕲 Can collect particular	
of data is available	types of data	

- Methods of data collection for each type:
 - **Naturalistic** observe what naturally occurs
 - Diary studies (write down observations)
 - Audio or video recordings (and transcripts)

- Methods of data collection for each type:
 - **Experimental** create situations, collect responses
 - Infants react differently when they hear something familiar vs. new
 → Do two segments sound different?
 - <u>Young children</u> can point to pictures, answer questions ("which is a mouth?")
 - <u>All ages</u> can do eye-tracking experiments
 → Which picture on a screen do they watch?

Examples of some experimental methods used in child language research

- Video
 - Infant Language Lab (1999) Johns Hopkins Video is old, but shows actual infants being tested
- Research lab web sites with photos & information about the methods they use
 - <u>Bergelson Lab</u> Duke U and Harvard U
 - <u>BabyLab</u> U Potsdam
 - <u>Penn Infant Language Center</u> U Pennsylvania