• Movement, part 1: The Inversion rule

Background reading:

- *CL* Ch 5, §3, “Move”
- *CL* Ch 5, Appendix section on “Using Move”
1. Review and context for this discussion

• Syntax is **creative**: humans can produce and understand sentences never seen before

• Linguists want to know: How does this work?

• Goal is to build a syntax **model** that can:
 - Produce only sentences that native speakers find **grammatical**
 - Make the right predictions about which words in a sentence form **constituents** (units, subgroups)

• Building an effective model helps us understand the properties of the actual human mental grammar
1. Review and context for this discussion

• What do we do when we find sentences for which our model is making the **wrong prediction**?
 - Add or change some aspect of our model in order to make the predictions better

• So far, our syntax model (for English) contains:
 - the **X' schema** (how to combine words into phrases)
1. Review and context for this discussion

- What do we do when we find sentences for which our model is making the **wrong prediction**?
 - Add or change some aspect of our model in order to make the predictions better

- So far, our syntax model (for English) contains:
 - the **X' schema** (how to combine words into phrases)

 > What do we do when there are ‘extra’ phrases?
1. Review and context for this discussion

• What do we do when we find sentences for which our model is making the **wrong prediction**?
 - Add or change some aspect of our model in order to make the predictions better

• So far, our syntax model (for English) contains:
 - **the X' schema** (how to combine words into phrases)
 - **the modifier structure** (for ‘extra’ phrases)

> How do we rule out sentences like
 *Grover slept the baby or *Susan devoured or
 *Oscar put the book?
1. Review and context for this discussion

• What do we do when we find sentences for which our model is making the wrong prediction?
 - Add or change some aspect of our model in order to make the predictions better

• So far, our syntax model (for English) contains:
 - the X' schema (how to combine words into phrases)
 - the modifier structure (for ‘extra’ phrases)
 - complement options (chosen by specific heads), including the double-complement structure when needed (for cases like the verb put)
2. Extending our model of syntax again

• Is it surprising that this sentence is grammatical?

(1) What might the puppy devour?
2. Extending our model of syntax again

- Is it surprising that this sentence is **grammatical**?

(1) *What might the puppy devour?*

 - Why is the auxiliary *might* on the **left** side of the subject NP?
 - Why is there **no** NP complement in the VP as required by *devour*?
 - What is the **position** of *what*?

- An approach that addresses all these factors: the syntactic **transformation** known as **Move**
3. Yes-no questions

• Consider these examples:

 (2a) Students will study the lessons.

 (2b) The students will study the lessons.

 (2c) The dedicated students in this class will study the lessons.

• What does it look like when those sentences are made into yes-no questions?

 → Yes-no questions are questions to which the answer would be “yes” or “no”
3. *Yes-no* questions

- What does it look like when those sentences are made into *yes-no* questions?

 (2a) *Will* [students] __ study the lessons?

 (2b) *Will* [the students] __ study the lessons?

 (2c) *Will* [the dedicated students in this class] __ study the lessons?

- The auxiliary *will* moves to a position to the left of the subject

 → What position is it moving to?
(2a) **Will** [*students*] _ study the lessons?_

- Proposal: *Every* TP is inside a CP (not just embedded TPs)
 - This is independently supported by various facts about languages other than English

- The C of a **matrix clause** (main clause) contains information about whether or not the sentence is a question
 - In a question, the matrix C contains a **+Q** symbol
 - In a non-question, the matrix C does not contain this symbol
3. Yes-no questions

(2a) **Will** [students] __ study the lessons?

- Proposal: The mental grammar for syntax includes **movement rules**
 - Movement rules take words or phrases in an X' tree and move them to some other position

- **How movement rules work** in our model
 - A moved element leaves a **trace** (t) in its original position
 - A moved element retains its original category label (under the one it moves into)
 - Any part of the structure of the sentence not affected by the movement rule does not change
3. Yes-no questions

(2a) **Will** [students] _ study the lessons?

- **Inversion** — a movement rule that exists in English (and in some, but not all, other languages):

 When the matrix C is +Q, move T to the C position and attach it next to +Q (see *CL*, p 185)

 → We can use the Inversion rule to explain why the auxiliary verb (like *will* above) in a yes-no question appears to the left of the subject
3. Yes-no questions

(2a) **Will** [students] __ study the lessons?

- Step 1: Construct a tree for the **deep structure** of the sentence, using the X' schema as usual

 +Q students will study the lessons

 - **Deep structure** refers to the structure built according to the X' schema, **before** any other syntactic rules (such as movement rules) have applied

 - What a speaker actually says, after all the syntactic rules have applied, is the **surface structure**

- +Q **is present** (in the C position) here, because this sentence has the meaning of a question — this **triggers Inversion**
3. Yes-no questions

(2a) **Will** [students] ___ study the lessons?

- Step 1: Construct the **deep structure** (+Q is in C)

```
(2a) students will study the lessons
```
3. Yes-no questions

(2a) **Will** [students] __ study the lessons?

- Step 2: **Inversion** applies: *will* moves to C, leaving *t*
3. Yes-no questions

- Can we find evidence to support the proposal that the fronted auxiliary has moved to C?

- Consider: Does this proposal explain why it is only the matrix auxiliary that moves?

→ Compare an embedded question:

(3) *We asked whether Pat will succeed.*

- What is the structure of the embedded CP?
- Can we explain why the auxiliary doesn’t move into the embedded C position?
3. Yes-no questions

If the C position is where the fronted auxiliary moves to, we can explain why the auxiliary doesn’t move in an embedded question: **C is already occupied**
3. Yes-no questions

• Does this imply that every matrix (main-clause) TP is inside a CP, even if it’s not a question?
 - Actually, yes!
 - But we sometimes take a shortcut by omitting the topmost CP from our tree diagram, in a sentence where this CP contains no overt C head and no overt specifier.
4. Progress report

• Is it surprising that this sentence is grammatical?

(1) *What might the puppy devour?*

- Why is the auxiliary *might* on the *left* side of the subject NP? | Inversion has applied
- Why is there no NP complement in the VP as required by *devour*?
- What is the *position* of *what*?

→ The last two questions are the topic of the next slide set