• Child language acquisition
• Acquisition of phonology

Background reading:

• CL Ch 9, §1, “The study of language acquisition”
• CL Ch 9, §2, “Phonological development”
1. Main ideas: Child language acquisition

- Adults can speak and understand their native language(s) because they have a **lexicon** and **mental grammar** of that language:
 - **lexicon**
 - **mental grammar**
1. Main ideas: Child language acquisition

- **Adults** can speak and understand their native language(s) because they have a **lexicon** and **mental grammar** of that language:
 - **lexicon** — where sounds, meaning, and other unpredictable information are stored for each morpheme
 - **mental grammar** — rules and principles that handle systematic patterns, including phonology, morphology, and syntax
1. Main ideas: Child language acquisition

- **Adults** can speak and understand their native language(s) because they have a **lexicon** and **mental grammar** of that language.

- How does a child acquiring a native language (first language; L1) get to this **target** adult state?
 - **lexicon:**

 - **mental grammar:**
1. Main ideas: Child language acquisition

- **Adults** can speak and understand their native language(s) because they have a **lexicon** and **mental grammar** of that language

- How does a child acquiring a native language (first language; L1) get to this **target** adult state?
 - **lexicon**: morpheme sound and meaning information must be learned and stored
 - **mental grammar**: How does this develop?

- Any (normally developing) infant has the potential to develop the mental grammar of any language
1. Main ideas: Child language acquisition

- Proposal:
 - Infants all start out with their mental grammar at the same *(universal)* original/default settings: “Universal Grammar”
 - When infants are exposed to language data, they will begin to develop the mental grammar needed to produce and comprehend a particular adult language *(the target language)*

We can analyze each stage of a child’s developing mental grammar with the same tools we use for adult languages.
2. L1 acquisition and mental grammar

• A child in the process of acquiring a language goes through different **stages** of development
 - These stages reflect **intermediate mental grammars** on the way to the adult grammar

• A child often shows **variable** behavior
 - A rule may be applied only some of the time
 - Multiple versions of a rule may be in use

• But we can still find a great deal of **systematicity** in children’s language behavior
2. L1 acquisition and mental grammar

- “Learning” a native language is not the same as learning to do math or ride a bike
 - This is why the term **acquisition**, not “learning,” is typically used for this process

- Children do not acquire language because their parents “teach” it to them
 - More about this in a later class

- Children acquire language through contact between
 - the **language data** in the environment
 - the (universal) acquisition mechanism of the **mental grammar**
• Studying the process of language acquisition can give us important insight into:
 - the nature of the mental grammar for a particular language
 - the range of the characteristics of possible human mental grammars: Are there ‘mistakes’ that children never make?
3. Phonological development

• **Distinguishing** different speech sounds
 - 6-8 months: Infants can distinguish among almost all of the sound categories used in the world’s languages
 - 10-12 months: Infants have difficulty distinguishing sound categories that are **not contrastive** in their target language

• What does this change suggest about the child’s mental grammar?
3. Phonological development

• 10-12 months: Infants have difficulty distinguishing sound categories that are not contrastive in their target language.

• This developmental change is evidence for the beginning of a language-specific phonological grammar.
 - They are developing an inventory of contrastive sounds (phonemes).
3. Phonological development

- **Babbling** — approximately 6 to 12 months
 - The most frequent consonants used in babbling are very consistent even for babies acquiring different target languages

Table 9.1 from *CL*, p 353 | What generalizations can we make?

Cross-linguistic similarities in babbling

<table>
<thead>
<tr>
<th>Frequently found</th>
<th>Infrequently found</th>
</tr>
</thead>
<tbody>
<tr>
<td>p b m</td>
<td>f v θ ŋ</td>
</tr>
<tr>
<td>t d n</td>
<td>s h w j</td>
</tr>
<tr>
<td>k g</td>
<td>ñ</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Phonological development

Table 9.1 from CL, p 353 | What generalizations can we make?

Cross-linguistic similarities in babbling

<table>
<thead>
<tr>
<th>Frequently found</th>
<th>Infrequently found</th>
</tr>
</thead>
<tbody>
<tr>
<td>p b m</td>
<td>f v θ ð</td>
</tr>
<tr>
<td>t d n</td>
<td>ʃ ʒ ʧ ʤ</td>
</tr>
<tr>
<td>k ɡ</td>
<td>l r ŋ</td>
</tr>
<tr>
<td>s h w j</td>
<td></td>
</tr>
</tbody>
</table>

- Labials are common
- Oral and nasal stops are common
- Fricatives are rare, except [s, h]
- Liquids are rare but glides are common
3. Phonological development

- **Babbling** — approximately 6 to 12 months
 - The most frequent consonants used in babbling are very consistent across target languages
 - The most frequent consonants used are also frequent sounds in adult languages

- Does this tell us something about UG? (This question is controversial!)
3. Phonological development

- **Babbling** — approximately 6 to 12 months
 - The most frequent consonants used in babbling are very consistent across target languages
 - The most frequent consonants used are also frequent sounds in adult languages

- Does this tell us about UG? (Controversial!)
 - Maybe these consonants are typically early and common because **UG prefers them**
 - But maybe it is because of **articulation and perception** factors that do *not* depend on UG
3. Phonological development

- Individual children develop differently, but some **general patterns** can be observed:
 - Vowels develop before consonants
 - Stops are usually the earliest consonants
 - Labial is usually the first place of articulation (note: sighted children only!)
 - New phoneme categories are distinguished in word-initial position before other positions

- What factors might lead to these patterns?
In many cases, children are able to **distinguish between phonemes they hear** even before they can produce them.

- How do we know this?
- What are the implications for the child’s **mental grammar**?
3. Phonological development

- In many cases, children are able to distinguish between phonemes they hear even before they can produce them.

- We often find that comprehension is more adult-like than production.
 - Example: A child pronounces both mouse and mouth as [maws], but can point to the correct pictures in a comprehension experiment.

- What are the implications of this pattern?
3. Phonological development

• A child pronounces both *mouse* and *mouth* as [maws], but can point to the correct pictures in a comprehension experiment.

• What are the **implications** of this pattern?
 - How is each of these morphemes represented in the child’s **mental lexicon**?
3. Phonological development

• A child pronounces both *mouse* and *mouth* as [maws], but can point to the correct pictures in a comprehension experiment.

• What are the **implications** of this pattern?
 - How is each of these morphemes represented in the child’s **mental lexicon**?
 • ![Mouse] /maws/
 • ![Mouth] /mawθ/
 - How can we explain the child’s **pronunciation**?
 • [maws]
3. Phonological development

- If a child has an adult-like **phonemic** form, but produces a non-adult-like **phonetic** form...
 - Phonemic form: 😁 /mawθ/
 - Phonetic form: [maws]
3. Phonological development

• If a child has an adult-like **phonemic** form, but produces a non-adult-like **phonetic** form...
 - Phonemic form: \(/\text{maw}\theta/ \)
 - Phonetic form: \([\text{maws}]\)

• The child’s developing grammar must have a **phonological rule** that is not part of the adult grammar
3. Phonological development

- Writing child-specific phonological rules
 - Same as for adult phonological rules:
 - Rule format (A → B / X _ Y)
 - Use of **sound properties**
 - One difference: A child-specific rule may have **no environment** if a certain natural class changes into something else **everywhere**
 - Rule in such a case is only “A → B”, no “ / ...”

- *Mouth* example: A rule for /mawθ/ → [maws]?
3. Phonological development

- Writing child-specific phonological rules
 - Same as for adult phonological rules:
 - Rule format \((A \rightarrow B / X _ _ Y) \)
 - Use of **sound properties**
 - One difference: A child-specific rule may have **no environment** if a certain natural class changes into something else *everywhere*
 - Rule in such a case is only “\(A \rightarrow B \)”, no “ / ...”

- *Mouth* example: **voiceless interdental → alveolar**
3. Phonological development

• Example from A, age 1;11

(a) cup [tʌp]
(b) goat [dowt]
(c) dog [dɔt]

okay [otej]
Grampa [dæmpə]
egg [ejt]

fork [fɔrт]
digger [dɪdɹ]

• What systematic patterns can we see here?

(Hint: Think about phonetic properties and natural classes)

• What rule(s) should we propose for A at this stage?
3. Phonological development

- Example from A, age 1;11

(a) cup [tʌp] (b) goat [dəʊt] (c) dog [dɔt]
ok *ay [ətʃ] Grampa [dæmpə] egg [eʃ]
for k [fɔt] dig ger [dɪdʒ]

- What systematic patterns can we see here?
 - /k/ produced as [t] in all positions
 - /ɡ/ produced as [d] in initial and medial positions and as [t] in final position

- General rule?
3. Phonological development

- Example from A, age 1;11

 (a)
 \textit{cup} \quad [\textit{tʌp}]

 (b)
 \textit{goat} \quad [\textit{dowt}]

 (c)
 \textit{dog} \quad [\textit{dɔt}]

 \textit{okay} \quad [\textit{oˈtej}]

 \textit{Grampa} \quad [\textit{dæmpə}]

 \textit{egg} \quad [\textit{ejt}]

 \textit{fork} \quad [\textit{fɔrt}]

 \textit{digger} \quad [\textit{dɪdɹə}]

- What systematic patterns can we see here?
 - /k/ produced as [t] in all positions
 - /g/ produced as [d] in initial and medial positions and as [t] in final position

- Generalize? Velar stops \rightarrow alveolar
 Apparently also: Voiced stops \rightarrow voiceless / _#
3. Phonological development

• A consistently applied this rule until about age 2;6
 - Then 2 wks of variable [t]~[k] for /k/ (likewise /g/)
 Sometimes, A would visibly correct her first production: “[tʌp] ... [kʌp]”
 - After that, she settled on consistent [k] and [g]
 - Only one lexical item showed confusion about which phoneme it contained: gear [dɪɻ]
3. Phonological development

• A **consistently** applied this rule until about age 2;6
 - Then 2 wks of **variable** [t]~[k] for /k/ (likewise /g/)
 Sometimes, A would visibly **correct** her first production: “[tʌp] ... [kʌp]”
 - After that, she settled on consistent [k] and [g]
 - Only one lexical item showed confusion about which phoneme it contained: *gear* [diʌ]

• Just for fun: This actually happened, literally last week, when I misheard something A said about a bad smell (A is now 4;6)
4. Methods in acquisition research

- **Naturalistic** approach
 - Observe and record child language
 - Online data repository: [CHILDES](#)

- Advantages of the naturalistic approach

- Disadvantages
4. Methods in acquisition research

• **Naturalistic** approach
 - Observe and record child language
 - Online data repository: CHILDES

• Advantages of the naturalistic approach
 - Data comparatively easy to collect
 - Shows language as it is used in context

• Disadvantages
 - Rare structures may not be collected
 - How can we tell what a child’s mental grammar will accept as grammatical?
4. Methods in acquisition research

• **Experimental** approach
 - Explicitly test children’s ability to produce, comprehend, or imitate language

• Advantages of this approach

• Disadvantages
4. Methods in acquisition research

- **Experimental** approach
 - Explicitly test children’s ability to produce, comprehend, or imitate language

- Advantages of this approach
 - Can study comprehension
 - Can investigate specific linguistic structures

- Disadvantages
 - Difficult to design good experiments for children
 - The relatively artificial context may affect aspects of children’s language behavior
4. Methods in acquisition research

Examples of experimental methods used in child language research

• Video
 - Infant Language Lab (1999) — Johns Hopkins
 Video is old, but shows actual infants being tested

• Research lab web sites with photos & information about the methods they use
 - Bergelson Lab — Duke U
 - BabyLab — U Potsdam
 - Penn Infant Language Center — U Pennsylvania