
Linguistics 200 Phonology

OT fundamentals: Constraints and constraint tableaus

1. From goals to constraints

(1) “Goals” are formalized in OT as constraints

(a) When we propose a constraint, we need to give it a formal definition that states the
conditions under which that constraint assigns a violation (‘*’)
• Constraint definitions refer to the entities in our model of phonological

representations, such as features, word boundaries, syllable structure, etc.

• It is useful to give the constraint a convenient name, and provide a plain-
language paraphrase of what goal it represents, but the definition is key

(b) Ideally, each constraint formalizes one simple goal
• Complicated patterns should come from the interaction of simple constraints,

not from constraints that are themselves complex

(2) Let’s take the “goals” we identified for Cairene Arabic and English, and formalize them
as constraints
(a) “avoid codas” can be formalized as this constraint:

NOCODA Assign one * for every syllable that has a coda
(b) “avoid onset clusters” can be formalized as this constraint:

NOONSETCLUSTER Assign one * for every syllable that has multiple segments in the
onset

(3) Constraint ranking is represented by the symbol “ » ” or “ >> ”
(a) The relative priority of different constraints in a given language depends on their

ranking in that language’s constraint hierarchy — a higher-ranked constraint will
be satisfied at the expense of a lower-ranked constraint

(b) The phonological patterns of languages differ because their constraint rankings
differ (the constraints are universal!)
• A » B means “A dominates (outranks, is ranked higher than) B”
• For Cairene Arabic, we proposed that NOONSETCLUSTER » NOCODA

2. Constraint tableaus: How the mental grammar maps a UR to an SR

(4) In OT, the grammar doesn’t take a UR and gradually derive a SR by applying rules
(a) The grammar takes a UR,
(b) considers all SRs that languages might choose for this UR (more on this later),
(c) and determines which SR is chosen as the winner by the constraint hierarchy

1

(5) We use a constraint tableau to show input, outputs, constraints, and violation marks
• Tableau is a French loanword, so the plural is spelled tableaus or (French) tableaux

/faslu/ ‘his term’ NOONSETCLUSTER NOCODA

→ a. fas.lu *

b. fa.slu *!

(a) The input is usually the same as a UR (more on this later)
• The input is placed in the top left corner of the tableau
• The competing output candidates are generated from the input

(b) The output candidates are the potential surface forms that compete to be chosen

• The output candidates are arranged in the leftmost column, in whatever order
seems most useful for the discussion

(c) The optimal output (also called the winning candidate or winner) is indicated with
the “pointing finger”, or with an arrow or another convenient symbol
• The other candidates are sometimes called ‘losing candidates’ or ‘losers’

(d) The constraints are listed from left to right, with the highest-ranked first
• Two constraints separated by a solid line: the left one dominates the right one
• Two constraints separated by a dashed line: no ranking relationship has been

established between the two

(e) Each time a candidate violates a constraint, a violation mark ‘ * ’ is added to the
tableau in the appropriate cell

• A fatal violation, which is a violation that makes a candidate lose, is sometimes
marked with ‘ ! ’, although this notation can become confusing in a complex
tableau and is therefore avoided by some authors

(6) A tableau can be used to make either of the following kinds of argument:

(a) If you know the input and the output, a tableau can be used to prove that a particular
constraint ranking is necessary for the right output to win
• This technique is known as a ranking argument
• This scenario is what we are doing when we are doing familiar kinds of

phonological analysis: trying to make a proposal about the grammar (the
constraint ranking) for a particular language

(b) If you know the ranking, then a tableau can be used to show what output would win
for a particular assumed input, or what input(s) should be proposed to ensure that a
particular output will win
• This technique is useful for testing the predictions of a constraint ranking
• This technique also allows us to test the predictions of a constraint set, if we look

at all the possible rankings for the constraints in that set (more on this later)

2

