Objectives:

- Find informative losers
- Distinguish markedness and faithfulness constraints

Background preparation:

Consider other "goals" for English VCCV

0. Today's plan

- Quick review: Where we are with OT
- Return to slides from last time: Formalizing priorities among goals
- Informative losing candidates
- Comparative tableau notation
- Practice with W/L notation
- Markedness and faithfulness constraints (time permitting)

- In Optimality Theory (OT), we formalize
 - "phonological goals" as ...
 - "priorities among goals" as ...
- Universal, or language-specific?

 In principle, analyzing the phonology of a language means determining ...

- In Optimality Theory (OT), we formalize
 - "phonological goals" as constraints
 - "priorities among goals" as a constraint ranking
- Universal, or language-specific?
 - Constraints are universal
 - Constraint rankings are language-specific
- In principle, analyzing the phonology of a language means determining its constraint ranking
 - ... but we are simultaneously trying to figure out what constraints are in the universal constraint set

 What information goes into a constraint tableau when we want to know how constraints are ranked?

- What information goes into a constraint tableau when we want to know how constraints are ranked?
 - Input (for now, this is the same as a UR)
 - The **winning output** (the actual surface form)
 - Competing output candidates (possible SRs)
 - Constraints
 - Constraint **violations** for each candidate
- In OT, the mental grammar
 - does not use rules to change URs step-by-step
 - does use constraints to choose the best SR

2. Formalizing priority as constraint ranking

Section 5 of outline from last time

3. Today's focus

- What do we mean by saying that the candidates in a tableau are "all the possible SRs"?
 - For now, assume this means "any SR that some language would plausibly pick for this input"
 - We will come back to this question again later

3. Today's focus

- How many candidates do we need to show?
 - Focus on informative losers losing candidates that show us something about how constraints are ranked
 - Remember "Love vs. Money"?
 - Informative losers can also tell us something about what the universal constraints are
 - Some constraint has to make them lose!

3. Today's focus

- Today, we will revisit English and Cairene Arabic and...
 - Identify additional informative losers
 - Use those informative losers to propose some new constraints
 - Use those informative losers to determine how the constraints are ranked

 Last time, we determined that Cairene Arabic has these two constraints, ranked as shown:

/Ragle:n/	NoOnsetCluster	NoCoda
→ (a) [RAG.leːn]		**
(b) [RA.gleːn]	*	*

Loser *[RA.gleːn] is plausible & informative—Why?

Cairene Arabic:

/Ragle:n/	NoOnsetCluster	NoCoda
→ (a) [RAG.leːn]		**
(b) [RA.gleːn]	*	*

- Loser *[RA.gleːn] is plausible & informative—Why?
 - Plausible: Some languages would choose it
 - Informative: It sets up constraint conflict between NoONsClust and NoCoda

- A comparative tableau is a way of notating a tableau to make constraint conflict explicit
 - This in turn lets us identify a valid ranking argument
 - A valid ranking argument identifies a constraint ranking that **must** be part of the language we are analyzing, in order for the correct candidate to win

- A comparative tableau shows "W" and "L" marks in the row for each loser
 - Consider each loser, one at a time
 - For each constraint, ask:
 - Does it prefer the winner? If so, add W
 - Does it prefer the loser? If so, add L

/Ragle:n/	NoOnsetCluster	NoCoda
→ (a) [RAG.leːn]		**
(b) [RA.gleːn]	*	*

- A comparative tableau shows "W" and "L" marks in the row for each loser
 - Consider each loser, one at a time
 - For each constraint, ask:
 - Does it prefer the winner? If so, add W
 - Does it prefer the loser? If so, add L

/Ragle:n/	NoOnsetCluster	NoCoda
→ (a) [RAG.leːn]		**
(b) [RA.gleːn]	* w	*

- A comparative tableau shows "W" and "L" marks in the row for each loser
 - Consider each loser, one at a time
 - For each constraint, ask:
 - Does it prefer the winner? If so, add W
 - Does it prefer the loser? If so, add L

/Ragle:n/	NoOnsetCluster	NoCoda
→ (a) [RAG.leːn]		**
(b) [RA.gleːn]	* w	* L

- A comparative tableau shows "W" and "L" marks
 - If a constraint with L is ranked too high, it will pick the loser — "dangerous" for our analysis
 - Every L constraint must be dominated by at least one W constraint (from the same tableau row)

/Ragle:n/	NoOnsetCluster	NoCoda
→ (a) [RAG.leːn]		**
(b) [RA.gleːn]	* w	* L

- This confirms our NoOnsClust » NoCoda ranking

Group discussion

- Here is the analysis we developed for English
 - How would we add W/L marks to this tableau?

/æklejm/	NoCoda	NoOnsetCluster
→ (a) [ə.kʰlejm]	*	*
(b) [ək.lejm]	**	

- Here is the analysis we developed for English
 - How would we add W/L marks to this tableau?

/æklejm/	NoCoda	NoOnsetCluster
→ (a) [ə.kʰlejm]	*	*
(b) [ək.lejm]	** W	L

- This confirms our NoCoda » NoOnsClust ranking
- In English, (a) defeats (b) because avoiding codas is more important than avoiding onset clusters

/æklejm/	NoCoda	NoOnsetCluster
→ (a) [ə.kʰlejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L

Group discussion

- Find one or more (losing) output candidates for input /æklejm/ (don't worry about aspiration) that avoid having [k] as a coda in some other way besides putting the [k] in an onset cluster
- What "goals" can make these candidates *lose*?

Assign W/L marks to these new informative losers

/æklejm/	NoCoda	NoOnsetCluster
→ (a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
(c) [ə.k <u>ə</u> .lejm]	*	
(d) [ə.lejm]	*	

Assign W/L marks to these new informative losers

/æklejm/	NoCoda	NoOnsetCluster
→ (a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
(c) [ə.k <u>ə</u> .lejm]	*	L
(d) [ə.lejm]	*	L

Which candidate(s) will the grammar pick here?

Assign W/L marks to these new informative losers

/æklejm/	NoCoda	NoOnsetCluster
(→)(a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
× (c) [ə.k <u>ə</u> .lejm]	*	L
× (d) [ə.lejm]	*	L

- Which candidate(s) will the grammar pick here?
 - The grammar currently picks (c) and (d), not (a)!

6. Markedness and faithfulness constraints

What constraints could make (c) and (d) lose?

/æklejm/	NoCoda	NoOnsetCluster
(→)(a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
× (c) [ə.k <u>ə</u> .lejm]	*	L
× (d) [ə.lejm]	*	L

→ We will pick up the discussion here next time

7. For next time

- Next class, we will focus on
 - Introducing faithfulness constraints
 - Practice with finding informative losers
 - Practice with making valid ranking arguments
 - More constraints involving syllable structure