Objectives:

- Factorial typology of segment distribution - Implications
- Child phonology in OT

Background preparation:

- Exercise: Fac. typ. of segmental distribution

0. Today's plan

- General OT check-in
- How much do we want to go over the last few prep questions?
- Any clarification questions on WU \#2?
- Factorial typology of segmental distribution
- Comparing models: Child phonology

0. General OT check-in

- All prep questions except 04.04 are now graded
- Any questions / any points to go over?
- Any clarification questions on WU \#2?

1. Review: Complementary distribution

- What are the three general types of constraints we need in order to analyze a pattern of complementary (predictable) distribution?

1. Review: Complementary distribution

- What are the three general types of constraints we need in order to analyze a pattern of complementary (predictable) distribution?

Context-specific M \quad Context-free M
(penalizes default allophone in specific context)
(penalizes
specific allophone in general)

F
(the faithfulness constraint(s) on the features that distinguish the two allophones)

- How are they ranked for complementary distribution?

1. Review: Complementary distribution

- Context-specific M » Context-free M » F
- F dominated by both M: Input choice of allophone is irrelevant; the M constraints will decide everything
- This is exactly what we need for complementary (predictable) distribution!
- Context-specific M » Context-free M: Specific allophone is always avoided, except in its specific context, where the default allophone is worse
- These are the constraints that determine which allophone appears where

2. Factorial typology and segmental distribution

- Here are the three constraints we proposed for our analysis of complementary distribution in Greek

NoVelar+FrontVowel
Assign one * for any sequence of segments [Dors]
[-bk] in which the [dors] segment is not also [cor]
*Cor-Dors (aka "No palatals")
Assign one * for any segment that is [cor, Dors]
Ident[cor]
Assign one * for any output segment that differs from its input segment with respect to [coronal]

2. Factorial typology and segmental distribution

- How many rankings are there for these three constraints? NoVel+FrV, *Cor-Dors, Ident[cor] What are they?
- For each of the rankings...
- What would happen to the following inputs? /ka/ /ke/ /ce/ /ca/
- Describe what distribution pattern we see for the segments [k] and [c] in a language with this ranking

2. Factorial typology and segmental distribution

- How many rankings are there for these three constraints? NoVel+FrV, *Cor-Dors, Ident[cor] What are they?

2. Factorial typology and segmental distribution

- How many rankings are there for these three constraints? NoVel+FrV, *Cor-Dors, Ident[cor] What are they?

3! = 6 rankings
1 NoVel+FrV » *Cor-Dors » Ident[cor] (= Greek)
2 Ident[cor] » *Cor-Dors » NoVel+FrV
3 Ident[cor] » NoVel+FrV » *Cor-Dors
4 NoVel+FrV » Ident[cor] » *Cor-Dors
5 *Cor-Dors » NoVel+FrV » Ident[cor]
6 *Cor-Dors » Ident[cor] » NoVel+FrV

2. Factorial typology and segmental distribution

- For each of the rankings...
- What would happen to the following inputs? /ka/ /ke/ /ce/ /ca/
- Describe what distribution pattern we see for the segments [k] and [c] in a language with this ranking

2. Factorial typology and segmental distribution

- Ranking (1): NoVel+FrV » *Cor-Dors» Ident[cor]
(this is the ranking for Greek)

$/ \mathbf{k a}$ /	NoVELAR+FRV	*Cor-Dors	IDENT[COR]	
\rightarrow (a)	[ka]			
(b)	[ca]		$*!$	$*$

| $/ \mathbf{k e} /$ | NoVELAR + FRV | *Cor-Dors | IDENT[COR] |
| :---: | :--- | :---: | :---: | :---: |
| (a) $\quad[\mathrm{ke}]$ | $*!$ | | |
| \rightarrow (b) $[\mathbf{c e}]$ | | $*$ | $*$ |

2. Factorial typology and segmental distribution

- Ranking (1): NoVel+FrV » *Cor-Dors» Ident[cor]
(this is the ranking for Greek)

/ce/		NoVelar+FrV	*Cor-Dors	Ident[cor]
\rightarrow (a)	[ce]		$*$	
(b)	$[\mathrm{ke}]$	$*!$		$*$

$/ \mathbf{c a}$ /	NoVELAR+FRV	*Cor-Dors	IDENT[COR]	
(a)	[ca]		$*!$	
\rightarrow (b)	[ka]			$*$

2. Factorial typology and segmental distribution

- Ranking (1): NoVel+FrV » *Cor-Dors» Ident[cor]
(this is the ranking for Greek)
- Outcomes:

$$
\begin{array}{ll}
/ \mathrm{ka} / \rightarrow[\mathrm{ka}] & / \mathrm{ca} / \rightarrow[\mathrm{ka}] \\
/ \mathrm{ke} / \rightarrow[\mathrm{ce}] & / \mathrm{ce} / \rightarrow[\mathrm{ce}]
\end{array}
$$

- Distribution:

2. Factorial typology and segmental distribution

- Ranking (1): NoVel+FrV » *Cor-Dors» Ident[cor]
(this is the ranking for Greek)
- Outcomes:
$/ \mathrm{ka} / \rightarrow$ [ka] $/ \mathrm{ca} / \rightarrow$ [ka]
$/ \mathrm{ke} / \rightarrow$ [ce] $/ \mathrm{ce} / \rightarrow$ [ce]
- Distribution: complementary (predictable)
- Faithfulness is lowest — choice of [k] vs. [c] in input has no influence
- Context-specific M » context-free M environment determines [k] vs. [c]

2. Factorial typology and segmental distribution

- Pause for an important question:

What about all the other candidates?

- What are some other useful losers for this output?

/ke/	NoVelar + FrV	*Cor-Dors	Ident[cor]
(a) [ke]	*!		
\rightarrow (b) [ce]		*	*
...			

2. Factorial typology and segmental distribution

- Pause for an important question:

What about all the other candidates? Examples:

/ke/	NoVelar + Friv	*Cor-Dors	Ident[cor]
(a) [ke]	*!		
\rightarrow (b) [ce]		*	*
(c) $[\mathrm{ka}]$		L	L
(d) $[\mathrm{e}]$		L	L
(e) [kre]		L	L

2. Factorial typology and segmental distribution

- What about all the other candidates? Examples:

/ke/	$\begin{gathered} \text { Ident } \\ {[\mathrm{bk} / \mathrm{lo} \text {] }} \end{gathered}$	NoDel	No Epenth	$\begin{gathered} \text { NoVEL+ } \\ \mathrm{F}_{\mathrm{R} V} \end{gathered}$	$\begin{aligned} & \text { *Cor- } \\ & \text { Dors } \end{aligned}$	Ident [Cor]
(a) [ke]				*!		
\rightarrow (b) [ce]					*	*
(c) [ka]	* w				ᄂ	L
(d) [e]		* w			ᄂ	\llcorner
(e) [kre]			* w		L	L

- Other constraints outrank *Cor-Dors, ID[cor] in Greek

2. Factorial typology and segmental distribution

- What about all the other candidates?
- Other constraints » *Cor-Dors, ID[cor] in Greek
- For the rest of the discussion, we will keep our focus on languages where such other constraints dominate the key CS-M and F constraints
- Why? Only because we are interested in how constraints can predict distribution patterns between two segments
- The above other types of patterns are also predicted to exist! — that's just a separate discussion topic

2. Factorial typology and segmental distribution

- Ranking (2): Ident[cor] » *Cor-Dors » NoVel+FrV
- Ranking (3): Ident[cor] » NoVel+FrV » *Cor-Dors

/ka/		IDent[cor]	*Cor-Dors	NoVElar+FRV
\rightarrow (a)	[ka]			
(b)	[ca]	$*!$	$*$	

$/ \mathbf{k e} /$	IDENT[Cor]	*Cor-Dors	NoVELAR+FRV
\rightarrow (a) \quad [ke]			$*$
(b) $[$ [ce]	$*!$	$*$	

2. Factorial typology and segmental distribution

- Ranking (2): Ident[cor] » *Cor-Dors » NoVel+FrV
- Ranking (3): Ident[cor] » NoVel+FrV » *Cor-Dors

$/$ /ce/		IDent[cor]	*Cor-Dors	NoVELAR+FRV
\rightarrow (a)	[ce]		$*$	
(b)	$[\mathrm{ke}]$	$*!$		$*$

/ca/		IDent[cor]	*Cor-Dors	NoVelar+FRV
\rightarrow (a)	[ca]		$*$	
(b)	[ka]	$*!$		

2. Factorial typology and segmental distribution

- Ranking (2): Ident[cor] » *Cor-Dors » NoVel+FrV
- Ranking (3): Ident[cor] » NoVel+FrV » *Cor-Dors
- Outcomes:
$/ \mathrm{ka} / \rightarrow$ [ka] $\quad / \mathrm{ca} / \rightarrow$ [ca]
$/ \mathrm{ke} / \rightarrow$ [ke] $\quad / \mathrm{ce} / \rightarrow$ [ce]
- Distribution:

2. Factorial typology and segmental distribution

- Ranking (2): Ident[cor] » *Cor-Dors » NoVel+FrV
- Ranking (3): Ident[cor] » NoVel+FrV » *Cor-Dors
- Outcomes:

$$
\begin{array}{ll}
/ \mathrm{ka} / \rightarrow[\mathrm{ka}] & / \mathrm{ca} / \rightarrow[\mathrm{ca}] \\
/ \mathrm{ke} / \rightarrow[\mathrm{ke}] & / \mathrm{ce} / \rightarrow[\mathrm{ce}]
\end{array}
$$

- Distribution: contrastive (unpredictable) Note the presence of "minimal pairs"!
- Faithfulness is highest - input [k] and [c] will both survive unchanged, no matter what

2. Factorial typology and segmental distribution

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors

$/ \mathbf{k a} /$		NoVelar+FrV	Ident[cor]	*Cor-Dors
\rightarrow (a)	[ka]			
(b)	[ca]		$*!$	$*$

| $/ \mathbf{k e /}$ | NoVELAR+FRV | IDENT[COR] | *Cor-Dors |
| :---: | :---: | :---: | :---: | :---: |
| (a) $[\mathrm{ke}]$ | $*!$ | | |
| \rightarrow (b) $[\mathbf{c e}]$ | | $*$ | $*$ |

2. Factorial typology and segmental distribution

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors

$/$ /ce/		NoVelar+FrV	Ident[cor]	*Cor-Dors
\rightarrow (a)	[ce]			$*$
(b)	$[\mathrm{ke}]$	$*!$	$*$	

/ca/	NoVeLAR+FRV	IDENT[COR]	*Cor-Dors	
\rightarrow (a)	[ca]			$*$
(b)	[ka]		$*!$	

2. Factorial typology and segmental distribution

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors
- Outcomes:
/ka/ \rightarrow [ka]
$/ \mathrm{ca} / \rightarrow$ [ca]
$/ \mathrm{ke} / \rightarrow$ [ce] $\quad / \mathrm{ce} / \rightarrow$ [ce]
- Distribution:

2. Factorial typology and segmental distribution

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors
- Outcomes:
$\begin{array}{ll}/ \mathrm{ka} / \rightarrow[\mathrm{ka}] & / \mathrm{ca} / \rightarrow[\mathrm{ca}] \\ / \mathrm{ke} / \rightarrow[\mathrm{ce}] & / \mathrm{ce} / \rightarrow[\mathrm{ce}]\end{array}$
- Distribution: neutralization

Note "minimal pair" [ka] $\neq[\mathrm{ca}]$, but /ke/ \rightarrow [ce]

- NV+FV requires ‘special’ segment in special context
- Otherwise, faithfulness prevails

2. Factorial typology and segmental distribution

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV

/ka/	*Cor-Dors	NoVelar + FrV	Ident[cor]
\rightarrow (a) [ka]			
(b) [ca]	*!		*

/ke/		*Cor-Dors	NoVELAR+FRV	Ident[cor]
\rightarrow (a)	[ke]		$*$	
(b)	[ce]	$*!$		$*$

2. Factorial typology and segmental distribution

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV

$/$ ce/		*Cor-Dors	NoVELAR + FRV	Ident[cor]
(a)	[ce]	$*!$		
\rightarrow (b)	[ke]		$*$	$*$

$/$ /ca/		*Cor-Dors	NoVELAR+FRV	Ident[cor]
(a)	[ca]	$*!$		
\rightarrow (b)	[ka]			$*$

2. Factorial typology and segmental distribution

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV
- Outcomes:

$$
\begin{array}{ll}
/ \mathrm{ka} / \rightarrow[\mathrm{ka}] & / \mathrm{ca} / \rightarrow[\mathrm{ka}] \\
/ \mathrm{ke} / \rightarrow[\mathrm{ke}] & / \mathrm{ce} / \rightarrow[\mathrm{ke}]
\end{array}
$$

- Distribution:

2. Factorial typology and segmental distribution

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV
- Outcomes:
$/ \mathrm{ka} / \rightarrow$ [ka] $\quad / \mathrm{ca} / \rightarrow$ [ka]
$/ \mathrm{ke} / \rightarrow$ [ke] $/ \mathrm{ce} / \rightarrow$ [ke]
- Distribution: "inventory gap" (illegal segment) Note that there is no [c] in any output ever
- 'Special’ segment is banned, regardless of context and regardless of input
- This is how OT handles absent segments

2. Factorial typology and segmental distribution

- Summary of rankings and distribution patterns:
(1) $\operatorname{NoVel+FrV»*Cor-Dors»~Ident[cor]~predictable~}$
(2) Ident[cor]» *Cor-Dors » NoVel+FrV
(3) Ident[cor] » NoVel+FrV » *Cor-Dors
(4) NoVel+FrV » Ident[cor] » *Cor-Dors neutralization
(5) *Cor-Dors » NoVel+FrV » Ident[cor]
(6) *Cor-Dors » Ident[cor]» NoVel+FrV

2. Factorial typology and segmental distribution

- Implications of the OT approach to segmental distribution:
- If some language has a context-specific allophone and a default ("elsewhere") allophone...
- ...which one is predicted to be an illegal segment in another language?
- Rule-based phonology does not make this connection

3. Summary: Segmental distribution in OT

- General ranking for predictable distribution: Context-specific M » Context-free M » F
- General ranking for contrastive distribution: F » \{ Context-specific M , Context-free M \}
- General ranking for neutralization: Context-specific M » F » Context-free M
- General ranking for inventory gap:

Context-free M » \{Context-specific M , F \}

4. Child phonology in OT

- PP: Consonant patterns in child phonology
$/ \Lambda$ ðә/ \rightarrow [$\Lambda \mathrm{d} ə]$ ‘other' /swiy/ \rightarrow [win] ‘swing'
/zu:/ \rightarrow [du:] 'zoo' /bлmp/ \rightarrow [bлp] 'bump'
- Review:
- In general, how do child surface forms differ from adult surface forms?
- In a rule-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar?

4. Child phonology in OT

- PP: Consonant patterns in child phonology
$/ \Lambda$ ðә/ \rightarrow [$\Lambda \mathrm{d} ə]$ 'other' /swiy/ \rightarrow [wiy] ‘swing'
/zu:/ \rightarrow [du:] 'zoo' /bлmp/ \rightarrow [bлp] 'bump'
- Review:
- In general, how do child surface forms differ from adult surface forms? | simpler
- In a rule-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar? | more rules - more complex (?!)

4. Child phonology in OT

- PP: Consonant patterns in child phonology
$/ \Lambda$ ðә/ \rightarrow [Λ də] 'other' /swiy/ \rightarrow [wiy] ‘swing'
/zu:/ \rightarrow [du:] 'zoo' /bлmp/ \rightarrow [bлp] 'bump'
- What does the child's grammar look like in OT?
- Cluster simplification patterns
- Fricative ‘stopping' pattern

5. Cluster simplification

- Child grammar: What are the constraint rankings?

/swiy/ 'swing'		
\rightarrow (a) [wiy]		
(b) [swiy]		

/bımp/ 'bump'
\rightarrow (a) [bлр]
(b) $[\mathrm{b} \wedge \mathrm{mp}]$

5. Cluster simplification

- Child grammar: What are the constraint rankings?

/swiy/ 'swing'	NoOnsetCluster	NoDeletion
\rightarrow (a) [wiy]		$*$
(b) [swiy]	$*$	w

/bımp/'bump'	NoCodaCluster	NoDeletion
\rightarrow (a) [bıp]		$*$
(b) [b $\wedge \mathrm{mp}]$	$*$	w

5. Cluster simplification

- Child grammar: What are the constraint rankings?
- NoOnsetCluster » NoDeletion

/swiy/ ‘swing'	NoOnsetCluster	NoDeletion
\rightarrow (a) [wiy]		$*$
(b) [swiy]	$*$	w

- NoCodaCluster» NoDeletion

/bımp/ 'bump'	NoCodACluster	NoDeletion
\rightarrow (a) [bıp]		*
(b) [b $\wedge \mathrm{mp}]$	$*$	w

5. Cluster simplification

- Adult grammar: What are the constraint rankings?

/swiy/ 'swing'	NoOnsetCluster	NoDeletion
(a) [wiy]		$*$
\rightarrow (b) [swiy]	$*$	

/bımp/'bump'	NoCodaCluster	NoDeletion
(a) [bıp]		$*$
\rightarrow (b) [bımp]	$*$	

5. Cluster simplification

- Adult grammar: What are the constraint rankings?
- NoDeletion »NoOnsetCluster

/swiy/'swing'	NoDeletion	NoOnsetCluster
(a) [wiy]	$*$	w
\rightarrow (b) [swiy]		

- NoDeletion» NoCodaCluster

/bımp/'bump'	NoDeletion	NoCodaCluster
(a) [bıp]	$*$	w
(b) [bımp]		

6. Fricative 'stopping'

- Child grammar: What are the constraint rankings?

$/ \Lambda \partial \partial /$ 'other'		
\rightarrow (a) [^də]		
(b) [^ðə]		

/zu:/'zoo'			
\rightarrow (a) [du:]			
(b) [zu:]			

6. Fricative 'stopping'

- Child grammar: What are the constraint rankings?

/^ðә/ 'other'	NoFricative	Ident[tcont]
\rightarrow (a) [^də]		*
(b) [^ðə]	* w	L

/zu:/'zoo'	NoFricative	Ident[\pm cont]	IdenT[\pm strid]
\rightarrow (a) [du:]		$*$	$*$
(b) [zu:]	$*$	w	
L			

6．Fricative＇stopping＇

－Child grammar：What are the constraint rankings？
－NoFricative» Ident［土cont］

$/ \Lambda$ ðə／＇other＇	NoFricative	IDent［さcont］
\rightarrow（a）［＾də］		$*$
（b）［＾ðə］	$*$	w

－NoFricative » \｛ Ident［さcont］，Ident［ \pm strid］$\}$

／zu：／＇zoo＇	NoFricative	Ident［さcont］	Ident［さstrid］
\rightarrow（a）［du：］		$*$	$*$
（b）［zu：］	$*$	w	
L			

6. Fricative 'stopping'

- Is there really evidence for a NoFricative constraint?
- World Atlas of Language Structures (WALS)

Online map: Languages with no fricatives

6. Fricative 'stopping'

- Adult grammar: What are the constraint rankings?

$/ \Lambda$ ðə/ 'other'	NoFricative	IDent[\pm cont]
(a) [^də]		$*$
\rightarrow (b) [^ðə]	$*$	

/zu:/'zoo'	NoFricative	Ident[さcont]	Ident[さstrid]
(a) [du:]		$*$	$*$
\rightarrow (b) [zu:]	$*$		

6. Fricative 'stopping'

- Adult grammar: What are the constraint rankings?
- Ident[土cont] » NoFricative

/^ðə/ 'other'	Ident[\pm cont]	NoFricative
(a) [^də]	w	L
\rightarrow (b) [^ðə]		*

- \{Ident[\pm cont] <or> Ident[\pm strid] $\}$ » NoFricative

/zu:/ 'zoo'	Ident[\pm cont]	Ident[\pm strid]	NoFricative
(a) [du:]	$* \quad \mathrm{w}$	$*$	w
\rightarrow (b) [zu:]			L

7. Child vs. adult grammars in OT

- In general, how do child surface forms differ from adult surface forms? | simpler
- In a constraint-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar?
- What occurs during children's acquisition of phonology?

7. Child vs. adult grammars in OT

- In general, how do child surface forms differ from adult surface forms? | simpler
- In a constraint-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar? | different ranking, same constraints
- What occurs during children's acquisition of phonology?
\rightarrow The constraints get reranked to match adults

7. Child vs. adult grammars in OT

- Can we make any generalizations about how the child and adult rankings differ across these patterns?

Child:

\{ NoOnsetCluster, NoCodaCluster \} » NoDeletion
NoFricative» \{ Ident[\pm cont], Ident[\pm strid] \}

Adult:

NoDeletion» \{ NoOnsetCluster, NoCodaCluster \}
\{Ident[tcont] \}» NoFricative

4. Child vs. adult grammars in OT

- Can we make any generalizations about how the child and adult rankings differ?

Child: Markedness » Faithfulness
\{ NoOnsetCluster, NoCodaCluster \} » NoDeletion NoFricative » \{ Ident[\pm cont], Ident[\pm strid] $\}$

Adult: Faithfulness » Markedness

NoDeletion» \{ NoOnsetCluster, NoCodaCluster \} \{Ident $[\pm$ cont $]\}$ » NoFricative

- We'll pick this up next time

