Objectives:

- Factorial typology of segment distribution — Implications
- Child phonology in OT

Background preparation:

• Exercise: Fac. typ. of segmental distribution

0. Today's plan

- General OT check-in
 - How much do we want to go over the last few prep questions?
 - Any clarification questions on WU #2?
- Factorial typology of segmental distribution
- Comparing models: Child phonology

0. General OT check-in

- All prep questions except 04.04 are now graded
 - Any questions / any points to go over?

Any clarification questions on WU #2?

1. Review: Complementary distribution

 What are the three general types of constraints we need in order to analyze a pattern of complementary (predictable) distribution?

1. Review: Complementary distribution

 What are the three general types of constraints we need in order to analyze a pattern of complementary (predictable) distribution?

Context-specific M

(penalizes default allophone in specific context)

Context-free M

(penalizes specific allophone in general)

F

(the faithfulness constraint(s) on the features that **distinguish** the two allophones)

How are they **ranked** for complementary distribution?

1. Review: Complementary distribution

- Context-specific M » Context-free M » F
- *F dominated by both M:* Input choice of allophone is irrelevant; the M constraints will decide everything
 - This is exactly what we need for complementary (**predictable**) distribution!
- Context-specific M » Context-free M: Specific
 allophone is always avoided, except in its specific
 context, where the default allophone is worse
 - These are the constraints that determine which allophone appears where

 Here are the three constraints we proposed for our analysis of complementary distribution in <u>Greek</u>

NoVelar+FrontVowel

Assign one * for any sequence of segments [DORS] [-bk] in which the [DORS] segment is not also [COR]

*Cor-Dors (aka "No palatals")

Assign one * for any segment that is [cor, dors]

IDENT[COR]

Assign one * for any output segment that differs from its input segment with respect to [CORONAL]

- How many rankings are there for these three constraints? **NoVel+FrV**, *Cor-Dors, IDENT[cor] What are they?
- For each of the rankings...
 - What would happen to the following inputs? /ka/ /ke/ /ce/ /ca/
 - Describe what distribution pattern we see for the segments [k] and [c] in a language with this ranking

• How many rankings are there for these three constraints? **NoVel+FrV**, *Cor-Dors, IDENT[cor] What are they?

• How many rankings are there for these three constraints? **NoVel+FrV**, *Cor-Dors, IDENT[cor]

What are they?

```
3! = 6 rankings
```

```
1 NoVel+FrV » *Cor-Dors » Ident[cor] (= Greek)
2 Ident[cor] » *Cor-Dors » NoVel+FrV
3 Ident[cor] » NoVel+FrV » *Cor-Dors
4 NoVel+FrV » Ident[cor] » *Cor-Dors
5 *Cor-Dors » NoVel+FrV » Ident[cor]
6 *Cor-Dors » Ident[cor] » NoVel+FrV
```

- For each of the rankings...
 - What would happen to the following inputs? /ka/ /ke/ /ce/ /ca/
 - Describe what **distribution pattern** we see for the segments [k] and [c] in a language with this ranking

Ranking (1): NoVel+FrV » *Cor-Dors » Ident[cor]
 (this is the ranking for Greek)

/ka/	NoVelar+FrV	*Cor-Dors	IDENT[COR]
→ (a) [ka]			
(b) [ca]		*!	*

/ke/	NoVelar+FrV	*Cor-Dors	IDENT[COR]
(a) [ke]	*!		
→ (b) [ce]		*	*

Ranking (1): NoVel+FrV » *Cor-Dors » IDENT[cor]
 (this is the ranking for Greek)

/ce/	NoVelar+FrV	*Cor-Dors	IDENT[COR]
→ (a) [ce]		*	
(b) [ke]	*!		*

/ca/	NoVelar+FrV	*Cor-Dors	IDENT[COR]
(a) [ca]		*!	
→ (b) [ka]			*

- Ranking (1): NoVel+FrV » *Cor-Dors » Ident[cor]
 (this is the ranking for Greek)
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/ \rightarrow [ka] /ke/ \rightarrow [ce] /ce/ \rightarrow [ce]
```

- Distribution:

- Ranking (1): NoVel+FrV » *Cor-Dors » Ident[cor]
 (this is the ranking for Greek)
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/ \rightarrow [ka] /ke/ \rightarrow [ce] /ce/ \rightarrow [ce]
```

- Distribution: **complementary** (predictable)
 - Faithfulness is lowest choice of [k] vs. [c] in input has no influence
 - Context-specific M » context-free M environment determines [k] vs. [c]

Pause for an important question:

What about all the other candidates?

What are some other useful losers for this output?

/ke/	NoVelar+FrV	*Cor-Dors	IDENT[COR]
(a) [ke]	*!		
→ (b) [ce]		*	*
•••			

Pause for an important question:

What about all the other candidates? Examples:

/ke/		NoVelar+FrV	*Cor-Dors	IDENT[COR]
(a)	[ke]	*!		
→ (b)	[ce]		*	*
(c)	[ka]		L	L
(d)	[e]		L	L
(e)	[kre]		L	L

What about all the other candidates? Examples:

/ke/	IDENT [bk/lo]	NoDel	No Epenth	NoVel+ FrV	*Cor- Dors	IDENT [COR]
				1 1 1	DONS	[CON]
(a) [ke]				*!		
→ (b) [ce]					*	*
(c) [ka]	* W				L	L
(d) [e]		* W			L	L
(e) [kre]			* W		L	L

- Other constraints outrank *Cor-Dors, Id[cor] in Greek

- What about all the other candidates?
 - Other constraints » *Cor-Dors, Id[cor] in Greek
 - For the rest of the discussion, we will keep our focus on languages where such other constraints dominate the key CS-M and F constraints
 - Why? Only because we are interested in how constraints can predict distribution patterns between two segments
 - The above other types of patterns are also predicted to exist! — that's just a separate discussion topic

- Ranking (2): Ident[cor] » *Cor-Dors » NoVel+FrV
- Ranking (3): Ident[cor] » NoVel+FrV » *Cor-Dors

/ka/	IDENT[COR]	*Cor-Dors	NoVelar+FrV
→ (a) [ka]			
(b) [ca]	*!	*	

/ke/	IDENT[COR]	*Cor-Dors	NoVelar+FrV
→ (a) [ke]			*
(b) [ce]	*!	*	

- Ranking (2): IDENT[COR] » *COR-DORS » NOVEL+FRV
- Ranking (3): Ident[cor] » NoVel+FrV » *Cor-Dors

/ce/	Ident[cor]	*Cor-Dors	NoVelar+FrV
→ (a) [ce]		*	
(b) [ke]	*!		*

/ca/	IDENT[COR]	*Cor-Dors	NoVelar+FrV
→ (a) [ca]		*	
(b) [ka]	*!		

- Ranking (2): IDENT[COR] » *COR-DORS » NoVEL+FRV
- Ranking (3): IDENT[COR] » NoVel+FRV » *COR-DORS
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/ \rightarrow [ca]
/ke/ \rightarrow [ke] /ce/ \rightarrow [ce]
```

- Distribution:

- Ranking (2): IDENT[COR] » *COR-DORS » NOVEL+FRV
- Ranking (3): IDENT[COR] » NoVel+FRV » *COR-DORS
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/ \rightarrow [ca]
/ke/ \rightarrow [ke] /ce/ \rightarrow [ce]
```

- Distribution: **contrastive** (unpredictable)
 Note the presence of "minimal pairs"!
 - Faithfulness is highest input [k] and [c] will both survive unchanged, no matter what

Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors

/ka/	NoVelar+FrV	IDENT[COR]	*Cor-Dors
→ (a) [ka]			
(b) [ca]		*!	*

/ke/	NoVelar+FrV	IDENT[COR]	*Cor-Dors
(a) [ke]	*!		
→ (b) [ce]		*	*

Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors

/ce/	NoVelar+FrV	IDENT[COR]	*Cor-Dors
→ (a) [ce]			*
(b) [ke]	*!	*	

/ca/	NoVelar+FrV	IDENT[COR]	*Cor-Dors
→ (a) [ca]			*
(b) [ka]		*!	

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/\rightarrow [ca] /ke/ \rightarrow [ce] /ce/\rightarrow [ce]
```

- Distribution:

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/\rightarrow [ca]
/ke/ \rightarrow [ce] /ce/\rightarrow [ce]
```

- Distribution: neutralization
 Note "minimal pair" [ka] ≠ [ca], but /ke/→[ce]
 - NV+FV requires 'special' segment in special context
 - Otherwise, faithfulness prevails

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV

/ka/	*Cor-Dors	NoVelar+FrV	IDENT[COR]
→ (a) [ka]			
(b) [ca]	*!		*

/ke/	*Cor-Dors	NoVelar+FrV	IDENT[COR]
→ (a) [ke]		*	
(b) [ce]	*!		*

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV

/ce/	*Cor-Dors	NoVelar+FrV	IDENT[COR]
(a) [ce]	*!		
→ (b) [ke]		*	*

/ca/	*Cor-Dors	NoVelar+FrV	IDENT[COR]
(a) [ca]	*!		
→ (b) [ka]			*

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/ \rightarrow [ka]
/ke/ \rightarrow [ke] /ce/ \rightarrow [ke]
```

- Distribution:

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV
 - Outcomes:

```
/ka/ \rightarrow [ka] /ca/ \rightarrow [ka] /ke/ \rightarrow [ke] /ce/ \rightarrow [ke]
```

- Distribution: "inventory gap" (illegal segment)
 Note that there is no [c] in any output ever
 - 'Special' segment is banned, regardless of context and regardless of input
 - This is how OT handles absent segments

Summary of rankings and distribution patterns:

(1) NoVel+FrV » *Cor-Dors » Ident[cor]	predictable
(2) IDENT[COR] » *COR-DORS » NOVEL+FRV	contrastive
(3) Ident[cor] » NoVel+FrV » *Cor-Dors	Contrastive
(4) NoVel+FrV » Ident[cor] » *Cor-Dors	neutralization
(5) *Cor-Dors » NoVel+FrV » Ident[cor]	inventory gap
(6) *Cor-Dors » Ident[cor] » NoVel+FrV	inventory gap

- Implications of the OT approach to segmental distribution:
 - If some language has a context-specific allophone and a default ("elsewhere") allophone...
 - ...which one is predicted to be an illegal segment in another language?

Rule-based phonology does not make this connection

3. Summary: Segmental distribution in OT

- General ranking for predictable distribution:
 Context-specific M » Context-free M » F
- General ranking for contrastive distribution:
 F » { Context-specific M , Context-free M }
- General ranking for **neutralization**:
 Context-specific M » F » Context-free M
- General ranking for inventory gap:
 Context-free M » { Context-specific M , F }

4. Child phonology in OT

PP: Consonant patterns in child phonology

```
/ \wedge \eth \ni / \rightarrow [\Lambda d \ni] 'other' /swiŋ/ \rightarrow [wiŋ] 'swing' /zu:/ \rightarrow [du:] 'zoo' /bʌmp/ \rightarrow [bʌp] 'bump'
```

- Review:
 - In general, how do child **surface forms** differ from adult surface forms?
 - In a rule-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar?

4. Child phonology in OT

PP: Consonant patterns in child phonology

```
/ \wedge \eth = / \rightarrow [\Lambda d \ni] 'other' /swin/ \rightarrow [win] 'swing' /zu:/ \rightarrow [du:] 'zoo' /b\(\lambda\)mp/ \rightarrow [b\(\lambda\)p] 'bump'
```

- Review:
 - In general, how do child **surface forms** differ from adult surface forms? | **simpler**
 - In a rule-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar? | more rules more complex (?!)

4. Child phonology in OT

PP: Consonant patterns in child phonology

```
/ \wedge \eth = / \rightarrow [\Lambda d \ni] 'other' /swin/ \rightarrow [win] 'swing' /zu:/ \rightarrow [du:] 'zoo' /b\(\lambda\)mp/ \rightarrow [b\(\lambda\)p] 'bump'
```

- What does the child's grammar look like in OT?
 - Cluster simplification patterns
 - Fricative 'stopping' pattern

/swiŋ/ 'swing'	
→ (a) [wiŋ]	
(b) [swiŋ]	

/bʌmp/ 'bump'	
→ (a) [bʌp]	
(b) [b _{\text{Nmp}}]	

/swiŋ/ 'swing'	/swin/ 'swing' NoOnsetCluster	
→ (a) [wiŋ]		*
(b) [swiŋ]	* W	L

/bʌmp/ 'bump'	NoCodaCluster NoDeletion	
→ (a) [bʌp]		*
(b) [bʌmp]	* W	L

- Child grammar: What are the constraint rankings?
 - NoOnsetCluster » NoDeletion

/swiŋ/ 'swing'	swin/ 'swing' NoOnsetCluster NoDele	
→ (a) [wiŋ]		*
(b) [swiŋ]	* W	L

- NoCodaCluster » NoDeletion

/bamp/ 'bump' NoCodaCluster		NoDeletion
→ (a) [bʌp]		*
(b) [b _{\text{Nmp}}]	* W	L

/swiŋ/ 'swing'	NoOnsetCluster	NoDeletion
(a) [wiŋ]		*
→ (b) [swiŋ]	*	

/bлmp/ 'bump'	NoCodaCluster	NoDeletion
(a) [bʌp]		*
→ (b) [bʌmp]	*	

- Adult grammar: What are the constraint rankings?
 - NoDeletion » NoOnsetCluster

/swiŋ/ 'swing'	/ 'swing' NoDeletion NoO	
(a) [wiŋ]	* W	L
→ (b) [swiŋ]		*

- NoDeletion » NoCodaCluster

/bamp/ 'bump' NoDeletion		NoCodaCluster
(a) [bʌp]	* W	L
→ (b) [bʌmp]		*

/ʌðə/ 'other'	
→ (a) [ʌdə]	
(b) [ʌðə]	

/zuː/ 'zoo'		
→ (a) [duː]		
(b) [zuː]		

/ʌðə/ 'other'	NoFricative	IDENT[±cont]
→ (a) [ʌdə]		*
(b) [ʌðə]	* W	L

/zuː/ 'zoo'	NoFricative	IDENT[±cont]	IDENT[±strid]
→ (a) [duː]		*	*
(b) [zuː]	* W	L	L

- Child grammar: What are the constraint rankings?
 - NoFricative » Ident[±cont]

/ʌðə/ 'other'	NoFricative	IDENT[±cont]
→ (a) [ʌdə]		*
(b) [ʌðə]	* W	L

- NoFricative » { Ident[±cont], Ident[±strid] }

/zuː/ 'zoo'	NoFricative	IDENT[±cont]	IDENT[±strid]
→ (a) [dux]		*	*
(b) [zuː]	* W	L	L

- Is there really evidence for a NoFricative constraint?
 - World Atlas of Language Structures (WALS)
 Online map: <u>Languages with no fricatives</u>

/ʌðə/ 'other'	NoFricative	IDENT[±cont]
(a) [ʌdə]		*
→ (b) [v ǧ•]	*	

/zuː/ 'zoo'	NoFricative	IDENT[±cont]	IDENT[±strid]
(a) [duː]		*	*
→ (b) [zuː]	*		

- Adult grammar: What are the constraint rankings?
 - IDENT[±cont] » NoFricative

/ʌðə/ 'other'	IDENT[±cont]	NoFricative
(a) [ʌdə]	* W	L
→ (b) [vðə]		*

- { | IDENT[±cont] < or > | IDENT[±strid] } » NoFricative

/zuː/ 'zoo'	IDENT[±cont]	IDENT[±strid]	NoFricative
(a) [duː]	* W	* W	L
→ (b) [zu ː]			*

- In general, how do child surface forms differ from adult surface forms? | simpler
- In a constraint-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar?
- What occurs during children's acquisition of phonology?

- In general, how do child surface forms differ from adult surface forms? | simpler
- In a constraint-based model of phonology, how do we have to say a child's grammar differs from the target (adult) grammar? | different ranking, same constraints
- What occurs during children's acquisition of phonology?
 - → The constraints get reranked to match adults

 Can we make any generalizations about how the child and adult rankings differ across these patterns?

Child:

```
{ NoOnsetCluster, NoCodaCluster } » NoDeletion NoFricative » { Ident[±cont], Ident[±strid] }
```

Adult:

```
NoDeletion » { NoOnsetCluster, NoCodaCluster } { Ident[±cont] } » NoFricative
```

 Can we make any generalizations about how the child and adult rankings differ?

```
Child: Markedness » Faithfulness
{ NoOnsetCluster, NoCodaCluster } » NoDeletion
NoFricative » { Ident[±cont], Ident[±strid] }

Adult: Faithfulness » Markedness
NoDeletion » { NoOnsetCluster, NoCodaCluster }
{ Ident[±cont] } » NoFricative
```

We'll pick this up next time