Phonology

Objectives:

- Find informative losers
- Make valid ranking arguments with comparative tableaus

Background preparation:

• Consider other "goals" for English VCCV

0. Today's plan

- Quick review: Where we are with OT
- Informative losing candidates
- Comparative tableaus
- Practice with W/L notation
- Adding constraints to the analysis

- In Optimality Theory (OT), we formalize
 - "phonological goals" as ...
 - "priorities among goals" as ...
- Universal, or language-specific?

 In principle, analyzing the phonology of a language means determining ...

- In Optimality Theory (OT), we formalize
 - "phonological goals" as **constraints**
 - "priorities among goals" as a **constraint ranking**
- Universal, or language-specific?
 - Constraints are universal
 - Constraint rankings are **language-specific**
- In principle, analyzing the phonology of a language means determining **its constraint ranking**

... but we are simultaneously trying to figure out what constraints are in the universal constraint set

• What information goes into a **constraint tableau** when we want to know how constraints are ranked?

- What information goes into a **constraint tableau** when we want to know how constraints are ranked?
 - **Input** (for now, this is the same as a UR)
 - The **winning output** (the actual surface form)
 - **Competing output candidates** (possible SRs)
 - Constraints
 - Constraint violations for each candidate
- In OT, the mental grammar
 - **does not** use rules to change URs step-by-step
 - does use constraints to choose the best SR

- What do we mean by saying that the candidates in a tableau are "**all** the **possible** SRs"?
 - For now, assume this means "any SR that some language would plausibly pick for this input"
 - We will come back to this question again later

2. Today's focus

- How many candidates do we need to show in a tableau when we are doing an OT analysis?
 - Focus on informative losers losing candidates that show us something about how constraints are ranked
 - Remember "Love vs. Money"?
 - Informative losers can also tell us something about **what the universal constraints are**
 - Some constraint has to *make* them lose!

2. Today's focus

- Today, we will revisit Cairene Arabic and English and...
 - Use informative losers to develop valid ranking arguments
 - Identify additional **informative losers**
 - Use those informative losers to propose some new constraints

 The ranking tableau shown here presents our analysis of Cairene Arabic from last time: with these two constraints, ranked as shown

/Ragle:n/	NoOnsetCluster	NoCoda
\rightarrow (a) [RAG.le:n]		**
(b) [RA.gleːn]	*	*

Loser *[RA.gleɪn] is plausible & informative—Why?

• Cairene Arabic (ranking tableau):

/Ragle:n/	NoOnsetCluster	NoCoda
\rightarrow (a) [RAG.le:n]		**
(b) [RA.gleːn]	*	*

- Loser *[RA.gle:n] is plausible & informative—Why?
 - Plausible: Some languages would choose it
 - Informative: It sets up constraint conflict between NoONsCLUST and NoCodA

- A **comparative tableau** is a way of notating a tableau to make **constraint conflict** explicit
 - This lets us identify a **valid ranking argument**
- A **valid ranking argument** identifies a constraint ranking that **must** be part of the language we are analyzing, in order for the correct candidate to win
 - Only such necessary rankings can be **proven** as part of our analysis of a language
 - Be careful not to claim more rankings than you can prove!

• Cairene Arabic:

/Ragle:n/	NoOnsetCluster	NoCoda
\rightarrow (a) [RAG.le:n]	(better)	** (worse)
(b) [RA.gle:n]	* (worse)	* (better)

- Last time, we used the "worse"/"better" notation to help us identify constraint conflict
- Now we will expand on this idea:
 Compare every loser in a tableau to the winner

- A comparative tableau shows "W" and "L" marks in the row for each loser
 - Compare the winner to each loser, one at a time
 - For **each constraint**, ask:
 - Does it think **the winner** is better? If so, add **W**
 - Does it think **this loser** is better? If so, add **L**

/Ragle:n/	NoOnsetCluster	NoCoda
\rightarrow (a) [RAG.le:n]		**
(b) [RA.gle:n]	*	*

- A comparative tableau shows "W" and "L" marks in the row for each loser
 - Compare the winner to each loser, one at a time
 - For each constraint, ask:
 - Does it think **the winner** is better? If so, add **W**
 - Does it think **this loser** is better? If so, add **L**

/Ragle:n/	NoOnsetCluster	NoCoda
\rightarrow (a) [RAG.le:n]		**
(b) [RA.gle:n]	* w	*

- A comparative tableau shows "W" and "L" marks in the row for each loser
 - Compare the winner to each loser, one at a time
 - For each constraint, ask:
 - Does it think **the winner** is better? If so, add **W**
 - Does it think **this loser** is better? If so, add **L**

/Ragle:n/	NoOnsetCluster	NoCoda
\rightarrow (a) [RAG.le:n]		**
(b) [RA.gle:n]	* w	* L

- A **comparative tableau** shows "W" and "L" marks
 - If a constraint with L is ranked too high, it will pick the loser — "dangerous" for our analysis
 - Every L constraint must be dominated by at least one W constraint (from the same tableau row)

/Ragleːn/	NoOnsetCluster	NoCoda
\rightarrow (a) [RAG.le:n]		**
(b) [RA.gleːn]	* w	* L

- This confirms our NoONSCLUST » NoCoda ranking

Group discussion

- Here is the analysis we developed for **English**
 - How would we add W/L marks to this tableau?

/æklejm/	NoCoda	NoOnsetCluster
\rightarrow (a) [ə.k ^h lejm]	*	*
(b) [ək.lejm]	**	

- Here is the analysis we developed for English
 - How would we add W/L marks to this tableau?

/æklejm/	NoCoda	NoOnsetCluster
\rightarrow (a) [ə.k ^h lejm]	*	*
(b) [ək.lejm]	** W	L

- This confirms our NoCoda » NoONSCLUST ranking
- In English, (a) defeats (b) because avoiding codas is more important than avoiding onset clusters

/æklejm/	NoCoda	NoOnsetCluster
\rightarrow (a) [ə.k ^h lejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L

Group discussion

 Find one or more (losing) output candidates for input /æklejm/ (don't worry about aspiration) that avoid having [k] as a coda in some other way besides putting the [k] in an onset cluster

• Assign W/L marks to these new informative losers

/æklejm/	NoCoda	NoOnsetCluster
→(a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
(c) [ə.k <u>ə</u> .lejm]	*	
(d) [ə.lejm]	*	

• Assign W/L marks to these new informative losers

/æklejm/	NoCoda	NoOnsetCluster
→(a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
(c) [ə.k <u>ə</u> .lejm]	*	L
(d) [ə.lejm]	*	L

• Which candidate(s) will the grammar pick here?

• Assign W/L marks to these new informative losers

/æklejm/	NoCoda	NoOnsetCluster
(→)(a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
× (c) [ə.k <u>ə</u> .lejm]	*	L
× (d) [ə.lejm]	*	L

- Which candidate(s) will the grammar pick here?
 - The grammar currently picks (c) and (d), not (a)!

5. Adding constraints to the analysis

• What constraints could make (c) and (d) lose?

/æklejm/	NoCoda	NoOnsetCluster
(→) (a) [ə.klejm]	*	*
(b) [ə <u>k</u> .lejm]	** W	L
× (c) [ə.k <u>ə</u> .lejm]	*	L
× (d) [ə.lejm]	*	L

5. Adding constraints to the analysis

- What constraints could make (c) and (d) lose?
 - We need a constraint **against deletion**
 - We need a constraint **against epenthesis**
- How can we define these constraints?
 - Assign one * for every ...

5. Adding constraints to the analysis

- What constraints could make (c) and (d) lose?
 - We need a constraint **against deletion**
 - We need a constraint **against epenthesis**
 - NoDELETION Assign one * for every segment in the input that is not in the output
 - NOEPENTHESIS Assign one * for every segment in the output that is not in the input
- Are these plausible constraints?
 - Is avoiding deletion/epenthesis a plausible goal?

6. For next time

- The prep questions ask you to try something new:
 - **Given** a particular constraint ranking ...
 - ... Which output candidate is **predicted** to win?

/ INPUT /	ConstraintA	ConstraintB
(a) [OUTPUT #1]	***	
(b) [OUTPUT #2]	**	*