Th Nov 14

Phonology

Objectives:

- Use factorial typology to predict possible languages
- Consider implications of syllablestructure analysis in OT

Background preparation:

• Exercise - Constraint rankings & their predictions

0. Today's plan

- OT check-in
- Factorial typology: The predictions of a constraint set
- Factorial typology of basic syllable structure
- Comparing models:
 Syllable structure with OT vs. rules

- How do we use an OT tableau to figure out the constraint ranking in a particular language (working from a data set)?
 - What do we know?

- What do we need to figure out?

- How do we use an OT tableau to figure out the constraint ranking in a particular language (working from a data set)?
 - What do we know?
 - → the **winning output**; the **input** (proposed)
 - What do we need to figure out?
 - → how the constraints are **ranked** How do we do this?

- How do we use an OT tableau to figure out the constraint ranking in a particular language (working from a data set)?
 - What do we know?
 - → the **winning output**; the **input** (proposed)
 - What do we need to figure out?
 - → how the constraints are **ranked**
 - How do we do this?
 - find informative losers
 - make valid ranking arguments (add W/L!)

- How do we use an OT tableau to predict which output candidate wins for a certain input in a certain language (whose grammar we know)?
 - What do we know?

- What do we need to figure out?

- How do we use an OT tableau to predict which output candidate wins for a certain input in a certain language (whose grammar we know)?
 - What do we know?
 - → the constraint **ranking**; the **input** of interest
 - What do we need to figure out?
 - → which output candidate is optimal ("the best") according to the ranking How do we do this?
 - Try the **faithful** output (looks like the input)
 - What other candidates lead to **conflict**?

- How do we use a tableau to predict the output, given the ranking and the input?
- Do we add W/L marks as part of figuring this out?
- Which output wins, if A » B » C?

/input/	A	В	С
(a) <i>faithful output</i>	*		
(b) output2		*	*
(c) output3		*	

- How do we use a tableau to predict the output, given the ranking and the input? (No W/L this time!)
- Which output wins, if A » B » C?

/input/	A	В	С
(a) <i>faithful output</i>	*!		
(b) output2		*	*
\rightarrow (c) output3		*	

- Optional: Use '!' when the ranking is **known**, to show what violation **makes** a candidate lose

- In OT, because the **constraints are universal**...
 - whenever we propose a constraint in the analysis of one language,
 - we are automatically proposing that this constraint is found in all languages
- Consider the typological implications of a constraint we are using in an analysis:
 - If this constraint is found in all languages,
 - and could potentially be ranked high or low,
 - are we making inaccurate **predictions**?

- How do we **test** the typological implications (=predictions) of a proposed set of constraints?
 - Consider all possible rankings
 - Consider *what kind* of language each ranking would predict
 - Evaluate whether such languages are plausible
- This is obviously a very large undertaking
 - Typically, we consider the predictions of a small set of relevant constraints at a time
 - (There is also OT analysis software to help with this!)

 How many possible rankings are there for a set of 3 constraints?

 How many possible rankings are there for a set of 3 constraints?

- 3 * 2 * 1 = 6 rankings ('3 factorial')
- *n* * (*n*-1) * (*n*-2) * ... * 1 = *n*! ('*n* factorial')
- The list of all possible rankings of a set of constraints is called the 'factorial typology' of that set of constraints

- Prep qns: <u>Constraint rankings and their predictions</u>
 - What are **all the rankings** of the mini constraint set NoEpenthesis, Onset, NoCoda?

- Prep qns: <u>Constraint rankings and their predictions</u>
 - All the rankings of NoEpenthesis, Onset, NoCoda?
 - 1 Onset » NoCoda
 - 2 NoCoda » Onset
 - 3 NoEpenthesis » Onset
 - 4 NoEpenthesis » NoCoda » Onset
 - 5 Onset » NoEpenthesis » NoCoda
 - 6 NoCoda » NoEpenthesis » Onset

Group discussion | For your ranking:

- Which **output** wins for **/abik/**? **/kamo/**?
- Which **σ types** (CV, CVC, V, CV) are **allowed**?

NoEpenthesis

» NoEpenthesis

» NoCoda

>>

Debriefing

Questions we will now consider:

- Which output wins for /abik/ under each ranking?
 What about /kamo/?
 - What "kind of language" does each ranking produce? (generalizations about σ structure)
- Are all the **predicted language types** plausible?
 - What are the actual cross-linguistic facts about onsets and codas?

- What violations are assigned to each of these candidates? (dashed lines = constraints not ranked)
 - Do we predict different outcomes in different languages?

/abik/	NoEpenth	Onset	NoCoda
(a) a.bik			
(b) a.bi.kə			
(c) ta.bik			
(d) ta.bi.kə			

- What violations are assigned to each of these candidates? (dashed lines = constraints not ranked)
 - Do we predict different outcomes in different languages?

/abik/	NoEpenth	Onset	NoCoda
(a) a.bik		*	*
(b) a.bi.kə	*	*	
(c) ta.bik	*		*
(d) ta.bi.kə	**		

- What violations are assigned to each of these candidates? (dashed lines = constraints not ranked)
 - Do we predict different outcomes in different languages?

/kamo/	NoEpenth	Onset	NoCoda
(a) ka.mo			
(b) kam.o			
(c) ə.ka.mo			
(d) ka.mot			

- What violations are assigned to each of these candidates? (dashed lines = constraints not ranked)
 - Do we predict different outcomes in different languages?

/kamo/	NoEpenth	Onset	NoCoda
(a) ka.mo			
(b) kam.o		*	*
(c) ə.ka.mo	*	*	
(d) ka.mot	*		*

• Which output wins for /abik/ under this ranking?

1) ONSET » NOCODA » NOEPENTHESIS

/abik/	Onset	NoCoda	NoEpenth
(a) a.bik	*	*	
(b) a.bi.kə	*		*
(c) ta.bik		*	*
(d) ta.bi.kə			**

• Which output wins for /abik/ under this ranking?

1) ONSET » NOCODA » NOEPENTHESIS /abik/ \rightarrow [ta.bi.kə]

/abik/	Onset	NoCoda	NoEpenth
(a) a.bik	*!	*	
(b) a.bi.kə	*!		*
(c) ta.bik		*!	*
→(d) ta.bi.kə			**

- Which output wins for /abik/ under this ranking?
- 2) NoCoda » Onset » NoEpenthesis

/abik/	NoCoda	Onset	NoEpenth
(a) a.bik	*	*	
(b) a.bi.kə		*	*
(c) ta.bik	*		*
(d) ta.bi.kə			**

- Which output wins for /abik/ under this ranking?
- 2) NoCoda » Onset » NoEpenthesis $/abik/ \rightarrow [ta.bi.kə]$ NoCoda NOEPENTH /abik/ ONSET (a) a.bik *| * (b) a.bi.kə * *| (C) ta.bik * *| \rightarrow (d) ta.bi.kə **

- Which output wins for /abik/ under this ranking?
- 3) NoEpenthesis » Onset » NoCoda

/abik/	NoEpenth	Onset	NoCoda
(a) a.bik		*	*
(b) a.bi.kə	*	*	
(c) ta.bik	*		*
(d) ta.bi.kə	**		

- Which output wins for /abik/ under this ranking?
- 3) NoEpenthesis » Onset » NoCoda $/abik/ \rightarrow [a.bik]$

/abik/	NoEpenth	Onset	NoCoda
\rightarrow (a) a.bik		*	*
(b) a.bi.kə	*!	*	
(c) ta.bik	*!		*
(d) ta.bi.kə	*i*		

- Which output wins for /abik/ under this ranking?
- 4) NoEpenthesis » NoCoda » Onset

/abik/	NoEpenth	NoCoda	Onset
(a) a.bik		*	*
(b) a.bi.kə	*		*
(c) ta.bik	*	*	
(d) ta.bi.kə	**		

- Which output wins for /abik/ under this ranking?
- 4) NoEpenthesis » NoCoda » Onset $/abik/ \rightarrow [a.bik]$

/abik/	NoEpenth	NoCoda	Onset
\rightarrow (a) a.bik		*	*
(b) a.bi.kə	*!		*
(c) ta.bik	*!	*	
(d) ta.bi.kə	*i*		

• Which output wins for /abik/ under this ranking?

5) Onset » NoEpenthesis » NoCoda

/abik/	Onset	NoEpenth	NoCoda
(a) a.bik	*		*
(b) a.bi.kə	*	*	
(c) ta.bik		*	*
(d) ta.bi.kə		**	

• Which output wins for /abik/ under this ranking?

5) ONSET » NOEPENTHESIS » NOCODA /abik/ \rightarrow [ta.bik]

/abik/	Onset	NoEpenth	NoCoda
(a) a.bik	*!		*
(b) a.bi.kə	*!	*	
\rightarrow (c) ta.bik		*	*
(d) ta.bi.kə		**İ	

• Which output wins for /abik/ under this ranking?

6) NoCoda » NoEpenthesis » Onset

/abik/	NoCoda	NoEpenth	Onset
(a) a.bik	*		*
(b) a.bi.kə		*	*
(c) ta.bik	*	*	
(d) ta.bi.kə		**	

- Which output wins for /abik/ under this ranking?
- 6) NoCoda » NoEpenthesis » Onset $/abik/ \rightarrow [a.bi.kə]$

/abik/	NoCoda	NoEpenth	Onset
(a) a.bik	*!		*
→(b) a.bi.kə		*	*
(c) ta.bik	*!	*	
(d) ta.bi.kə		**!	

- Which output wins for /abik/ under each ranking?
 - 1 Onset » NoCoda » NoEpenth
 - 2 NoCoda » Onset » NoEpenth
- /abik/ → [ta.bi.kə]/abik/ → [ta.bi.kə]
- 3 NoEpenth » Onset » NoCoda
 4 NoEpenth » NoCoda » Onset
- /abik/ → [a.bik]/abik/ → [a.bik]
- 5 Onset » NoEpenth » NoCoda
 - $/abik/ \rightarrow [ta.bik]$
- 6 NoCoda » NoEpenth » Onset /
- /abik/ → [a.bi.kə]

- Which output wins for /abik/ under these rankings?
 - 1 ONSET » NOCODA » NOEPENTH /abik/ \rightarrow [ta.bi.kə]
 - 2 NoCoda » Onset » NoEpenth $/abik/ \rightarrow [ta.bi.kə]$

• What generalizations can we make about syllable structure options for a language with this pattern?

- Which output wins for /abik/ under these rankings?
 - 1 ONSET » NOCODA » NOEPENTH /abik/ \rightarrow [ta.bi.kə]
 - 2 NoCoda » Onset » NoEpenth $/abik/ \rightarrow [ta.bi.kə]$

- What generalizations can we make about syllable structure options for a language with this pattern?
 - Onsetless syllables are forbidden
 - Codas are forbidden

- Which output wins for /abik/ under these rankings?
 - 3 NOEPENTH » ONSET » NOCODA $/abik/ \rightarrow [a.bik]$
 - 4 NOEPENTH » NOCODA » ONSET $/abik/ \rightarrow [a.bik]$

• What generalizations can we make about syllable structure options for a language with this pattern?

- Which output wins for /abik/ under these rankings?
 - 3 NOEPENTH » ONSET » NOCODA $/abik/ \rightarrow [a.bik]$
 - 4 NOEPENTH » NOCODA » ONSET $/abik/ \rightarrow [a.bik]$

- What generalizations can we make about syllable structure options for a language with this pattern?
 - Onsetless syllables are allowed
 - Codas are allowed

- Which output wins for /abik/ under this ranking?
 - 5 ONSET » NOEPENTH » NOCODA $/abik/ \rightarrow [ta.bik]$

• What generalizations can we make about syllable structure options for a language with this pattern?

- Which output wins for /abik/ under this ranking?
 - 5 ONSET » NOEPENTH » NOCODA $/abik/ \rightarrow [ta.bik]$

- What generalizations can we make about syllable structure options for a language with this pattern?
 - Onsetless syllables are forbidden
 - Codas are allowed

- Which output wins for /abik/ under each ranking?
 - 6 NoCoda » NoEpenth » Onset $/abik/ \rightarrow [a.bi.kə]$

• What generalizations can we make about syllable structure options?

- Which output wins for /abik/ under each ranking?
 - 6 NoCoda » NoEpenth » Onset $/abik/ \rightarrow [a.bi.kə]$

- What generalizations can we make about syllable structure options?
 - Onsetless syllables are allowed
 - Codas are forbidden

• Are the predictions of our constraint set plausible?

Ranking	Onsets?	Codas?
1 Onset » NoCoda » NoEp 2 NoCoda » Onset » NoEp	required	forbidden
3 NoEp » Onset » NoCoda 4 NoEp » NoCoda » Onset	not required	not forbidden
5 Onset » NoEp » NoCoda	required	not forbidden
6 NoCoda » NoEp » Onset	not required	forbidden

• Are the predictions of our constraint set plausible?

Ranking	Onsets?	Codas?
1 Onset » NoCoda » NoEp 2 NoCoda » Onset » NoEp	required	forbidden
3 NoEp » Onset » NoCoda 4 NoEp » NoCoda » Onset	not required	not forbidden
5 Onset » NoEp » NoCoda	required	not forbidden
6 NoCoda » NoEp » Onset	not required	forbidden

 Yes! Onsets can be required; codas can be banned; no language bans onsets, requires codas

- Are the predictions of our constraint set plausible?
 - Yes! Onsets can be required; codas can be banned; no language *bans* onsets, *requires* codas
- Of course, we have to take into account NoDeletion as well — some languages that enforce onsets or ban codas do so via deletion instead of epenthesis
 - Checking that by hand would require that we look at 4! = 24 grammars, not just 6

4. Factorial typology—conclusions, implications

- Ways to do an **approximate** check on the factorialtypology predictions of a **larger** constraint set
 - Consider what would happen *if each constraint were the highest ranked*
 - Example: If we propose a "HAVECODA" constraint, it will make bad predictions
 - Consider what would happen we switch the rankings of *just the faithfulness constraints* or *just the markedness constraints*
 - Example: Our 6 grammars, but with NoDeletion *ranked below* NoEpenthesis

4. Factorial typology—conclusions, implications

- One more complication
 - Sometimes there is a ranking predicted by factorial typology that no known language actually uses
 - This can often be explained by factors related to phonetics, child language acquisition, and historical change
 - A ranking that children would never see evidence to learn (for phonetic reasons) would never arise in any language

4. Factorial typology—conclusions, implications

- A key point of this discussion
 - Every OT analysis is also inherently making typological predictions
 - This makes the theory more interesting, and **places more restrictions on it**, compared to rule-based phonology

- When we analyzed syllable structure before, there were two steps in our procedure:
 - *Step 1.* Determine **what syllable structure is like** in the language we are analyzing.
 - How did we do this before?
 - Does this need to change when we use OT?

- When we analyzed syllable structure before, there were two steps in our procedure:
 - *Step 1.* Determine **what syllable structure is like** in the language we are analyzing.
 - We used **phonological evidence** from the data set to determine the "syllable-structure options"
 - What is a legal nucleus? Are onsets required? Are codas allowed? Are there onset or coda clusters?
 - Does this need to change when we use OT?

- When we analyzed syllable structure before, there were two steps in our procedure:
 - *Step 1.* Determine **what syllable structure is like** in the language we are analyzing.
 - We used **phonological evidence** from the data set to determine the "syllable-structure options"
 - What is a legal nucleus? Are onsets required? Are codas allowed? Are there onset or coda clusters?
 - Step 1 does not change in OT. We still need to use phonological evidence to make proposals about syllable structure in each language.

- When we analyzed syllable structure before, there were two steps in our procedure:
 - *Step 2.* Make our **model of the mental grammar** produce the appropriate syllable structure for the language we are analyzing.
 - How did we do this before?
 - Does this need to change when we use OT?

- When we analyzed syllable structure before, there were two steps in our procedure:
 - **Step 2.** Make our **model of the mental grammar** produce the appropriate syllable structure for the language we are analyzing.
 - Originally, we took care of Step 2 by means of three syllable-building rules: the Nucleus Rule, the Onset Rule, and the Coda Rule
 - Does this need to change when we use OT?

- When we analyzed syllable structure before, there were two steps in our procedure:
 - **Step 2.** Make our **model of the mental grammar** produce the appropriate syllable structure for the language we are analyzing.
 - Originally, we took care of Step 2 by means of three syllable-building rules: the Nucleus Rule, the Onset Rule, and the Coda Rule
 - > OT does not use rules → we don't use these now!
 We rank constraints such as ONSET, NoCODA, etc.,
 to choose the right output candidate

- What is the status of the "syllable-structure options" in the two models?
 - "Syllable-structure options" = What is a legal nucleus?
 Are onsets required? Are codas allowed? Are there onset or coda clusters?

- What is the status of the "syllable-structure options" in the two models?
 - "Syllable-structure options" = What is a legal nucleus? Are onsets required? Are codas allowed? Are there onset or coda clusters?
- Rule-based model: These "options" needed to be in the model, to stop syllable-building rules from applying (but how did that actually work?!)
- OT model: Now these "options" are not themselves in the model! (Whew.) They just help us summarize the facts about the world

- Languages always syllabify [V.CV] and never [VC.V]
 - How did we make our rule-based model do this?
 - How do we make this happen in OT?

- Languages always syllabify [V.CV] and never [VC.V]
 - How did we make our rule-based model do this?
 - > We said that the Onset Rule had to apply *earlier* than the Coda Rule **in all languages**
 - This is unusual rule ordering is usually language-specific
 - How do we make this happen in OT?
 - > The answer is a little surprising!

- Languages always syllabify [V.CV] and never [VC.V]
 - How do we make this happen in OT?

/kamo/	Onset	NoCoda
(a) [ka.mo]		
(b) [kam.o]	*	*

 Does ONSET have to be ranked above NoCodA for [ka.mo] to win?

5. Syllable-structure analysis—OT vs. rules

- Languages always syllabify [V.CV] and never [VC.V]
 - How do we make this happen in OT?

/kamo/	Onset	NoCoda
→(a) [ka.mo]		
(b) [kam.o]	*	*

 Does ONSET have to be ranked above NoCodA for [ka.mo] to win? No! If we have a constraint set that has ONSET and NoCodA — and not the reverse constraints — then [V.CV] always beats [VC.V]

Summary: Model comparisons

- The role of the syllable-structure "options"
 - Rule-based model: needed to formalize them in order to have universal syllable-building rules, but unclear how!
 - OT model: doesn't need to formalize them; different rankings of universal constraints get the right patterns
- Universal choice of [V.CV] over *[VC.V]
 - Rule-based model: Arbitrary stipulation that Onset Rule precedes Coda Rule
 - OT model: No arbitrary ranking between ONSET, NoCODA
 - Deeper qn: Why have ONSET, NoCoda as constraints?

6. General questions or concerns about OT?

• Any thoughts, questions, or concerns about this new view of the phonological mental grammar?