

Objectives:

• Factorial typology of segment distribution — Implications

Background preparation:

• Exercise: Fac. typ. of segmental distribution

1

0. Today's plan

- General OT check-in
 - Any questions about the last few sets of prep questions?
- Factorial typology of segmental distribution
- Looking ahead
 - Any questions about SC HW #4, 5?
 - Overview of WU #2

0. General OT check-in

- **Scores** and **feedback** have been released for all prep questions (except for 09.26/Ethics, 10.10/Tibetan)
 - Any questions / any points to go over?

• What are the three *general* types of constraints we need in order to analyze a pattern of complementary (predictable) distribution?

• What are the three *general* types of constraints we need in order to analyze a pattern of complementary (predictable) distribution?

 What does each of these three constraint types do, with respect to an allophone pattern?

 What are the three *general* types of constraints we need in order to analyze a pattern of complementary (predictable) distribution?

Context-specific M

(penalizes **default** allophone in **specific context**)

Context-free M

(penalizes **specific** allophone in **general**)

F

(the faithfulness constraint(s) on the features that **distinguish** the two allophones)

 How are these constraints ranked for complementary distribution?

- Context-specific M » Context-free M » F
- *F dominated by both M:* Input choice of allophone is irrelevant; the M constraints will decide everything
 - This is exactly what we need for complementary (**predictable**) distribution!
- Context-specific M » Context-free M: Specific allophone is always avoided, <u>except</u> in its specific context, where the default allophone is worse
 - These are the constraints that determine
 which allophone appears where

- Here are the three constraints we proposed for our analysis of complementary distribution in <u>Greek</u>
 - NoVelar+FrontVowel
 - Assign one * for any sequence of segments [DORS] [-bk] in which the [DORS] segment is not also [COR]
 - *Cor-Dors (aka "No palatals") Assign one * for any segment that is [cor, dors]

DENT[COR]

Assign one * for any output segment that differs from its input segment with respect to [CORONAL]

Discussion, part 1

 How many rankings are there for these three constraints? NoVel+FrV, *Cor-Dors, IDENT[cor]

What are they?

- How many rankings are there for these three constraints? NoVeL+FRV, *Cor-Dors, IDENT[cor]
 - What are they?
 - 3! = 6 rankings
 - 1 NoVel+FrV » *Cor-Dors » Ident[cor] (= Greek)
 - 2 Ident[cor] » *Cor-Dors » NoVel+FrV
 - 3 IDENT[COR] » NOVEL+FRV » *COR-DORS
 - 4 NoVel+FrV » Ident[cor] » *Cor-Dors
 - 5 *Cor-Dors » NoVel+FrV » Ident[cor]
 - 6 *Cor-Dors » Ident[cor] » NoVel+FrV

Discussion, part 2

- Use the <u>tableaus worksheet</u> as a guide
- For each of the rankings...
 - What would happen to the following inputs? /ka/ /ke/ /ce/ /ca/
 - Describe what **distribution pattern** we see for the segments [k] and [c] in a language with this ranking

Ranking (1): NoVel+FrV » *Cor-Dors » Ident[cor]

(this is the ranking for Greek)

/ka/	NoVelar+FrV	*Cor-Dors	DENT[COR]
→ (a) [ka]			
(b) [ca]		*!	*

/ke/	NoVelar+FrV	*Cor-Dors	DENT[COR]
(a) [ke]	*!		
→ (b) [ce]		*	*

Ranking (1): NoVel+FrV » *Cor-Dors » Ident[cor]

(this is the ranking for Greek)

/ce/	NoVelar+FrV	*Cor-Dors	DENT[COR]
→ (a) [ce]		*	
(b) [ke]	*!		*

/ca/	NoVelar+FrV	*Cor-Dors	DENT[COR]
(a) [ca]		*!	
→ (b) [ka]			*

- Ranking (1): NoVel+FrV » *Cor-Dors » Ident[cor] (this is the ranking for Greek)
 - Outcomes:
 - $/ka/ \rightarrow [ka] /ca/ \rightarrow [ka] (default env: [k])$ $/ke/ \rightarrow [ce] /ce/ \rightarrow [ce] (/_[-bk]: [c])$
 - Distribution:

- Ranking (1): NoVel+FrV » *Cor-Dors » Ident[cor] (this is the ranking for Greek)
 - Outcomes:

 $/ka/ \rightarrow [ka] /ca/ \rightarrow [ka] (default env: [k])$ $/ke/ \rightarrow [ce] /ce/ \rightarrow [ce] (/_[-bk]: [c])$

- Distribution: **complementary** (predictable)
 - Faithfulness is lowest choice of [k] vs. [c] in input has *no influence*
 - Context-specific M » context-free M environment determines [k] vs. [c]

• Pause for an important question:

What about all the other candidates?

- What are some **other useful losers** for this output?

/ke/	NoVelar+FrV	*Cor-Dors	DENT[COR]
(a) [ke]	*!		
→ (b) [ce]		*	*
• • •			

• Pause for an important question:

What about all the other candidates? Examples:

/ke/	NoVelar+FrV	*Cor-Dors	DENT[COR]
(a) [ke]	*!		
→ (b) [ce]		*	*
(c) [ka]		L	L
(d) [e]		L	L
(e) [kre]		L	L

• What about all the other candidates? Examples:

/ke/	IDENT [bk/lo]	NoDel	No Epenth	NoVel+ FrV	*Cor- Dors	Dent [cor]
(a) [ke]				*!		
→ (b) [ce]					*	*
(c) [ka]	* _W				L	L
(d) [e]		* _W			L	L
(e) [kre]			* _W		L	L

- Other constraints outrank *Cor-Dors, Id[cor] in Greek

- What about all the other candidates?
 - **Other constraints** » *Cor-Dors, Id[cor] in Greek
 - For the rest of the discussion, we will keep our focus on languages where such other constraints dominate the key CS-M and F constraints
 - Why? Only because we are interested in how constraints can predict distribution patterns between two segments
 - The above other types of patterns are also predicted to exist! that's just a separate discussion topic

- Ranking (2): IDENT[COR] » * COR-DORS » NoVEL+FRV
- Ranking (3): IDENT[COR] » NOVEL+FRV » *COR-DORS

/ka/	DENT[COR]	*Cor-Dors	NoVelar+FrV
→ (a) [ka]			
(b) [ca]	*!	*	

/ke/	DENT[COR]	*Cor-Dors	NoVelar+FrV
→ (a) [ke]			*
(b) [ce]	*!	*	

- Ranking (2): IDENT[COR] » * COR-DORS » NOVEL+FRV
- Ranking (3): Ident[cor] » NoVel+FrV » *Cor-Dors

/ce/	DENT[COR]	*Cor-Dors	NoVelar+FrV
→ (a) [ce]		*	
(b) [ke]	*!		*

/ca/	DENT[COR]	*Cor-Dors	NoVelar+FrV
→ (a) [ca]		*	
(b) [ka]	*!		

- Ranking (2): IDENT[COR] » * COR-DORS » NOVEL+FRV
- Ranking (3): IDENT[COR] » NOVEL+FRV » *COR-DORS
 - Outcomes:
 - /ka/ \rightarrow [ka]/ca/ \rightarrow [ca](default env: ??)/ke/ \rightarrow [ke]/ce/ \rightarrow [ce](/_[-bk]: ??)
 - Distribution:

- Ranking (2): IDENT[COR] » *COR-DORS » NOVEL+FRV
- Ranking (3): IDENT[COR] » NOVEL+FRV » *COR-DORS
 - Outcomes:
 - /ka/ \rightarrow [ka]/ca/ \rightarrow [ca](default env: ??)/ke/ \rightarrow [ke]/ce/ \rightarrow [ce](/_[-bk]: ??)
 - Distribution: **contrastive** (unpredictable) Note the presence of "minimal pairs"!
 - Faithfulness is highest input [k] and [c] will both survive unchanged, no matter what

• Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors

/ka/	NoVelar+FrV	DENT[COR]	*Cor-Dors
→ (a) [ka]			
(b) [ca]		*!	*

/ke/	NoVelar+FrV	IDENT[COR]	*Cor-Dors
(a) [ke]	*!		
→ (b) [ce]		*	*

• Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors

/ce/	NoVelar+FrV	DENT[COR]	*Cor-Dors
→ (a) [ce]			*
(b) [ke]	*!	*	

/ca/	NoVelar+FrV	IDENT[COR]	*Cor-Dors
→ (a) [ca]			*
(b) [ka]		*!	

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors
 - Outcomes:
 - $/ka/ \rightarrow [ka] /ca/ \rightarrow [ca] (default env: ??)$ $/ke/ \rightarrow [ce] /ce/ \rightarrow [ce] (/_[-bk]: [c])$
 - Distribution:

- Ranking (4): NoVel+FrV » Ident[cor] » *Cor-Dors
 - Outcomes:
 - $/ka/ \rightarrow [ka] /ca/ \rightarrow [ca] (default env: ??)$ $/ke/ \rightarrow [ce] /ce/ \rightarrow [ce] (/_[-bk]: [c])$
 - Distribution: neutralization
 Note "minimal pair" [ka] ≠ [ca], but /ke/→[ce]
 - NV+FV requires 'special' segment in special context
 - Otherwise, faithfulness prevails

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV

/ka/	*Cor-Dors	NoVelar+FrV	DENT[COR]
→ (a) [ka]			
(b) [ca]	*!		*

/ke/	*Cor-Dors	NoVelar+FrV	DENT[COR]
→ (a) [ke]		*	
(b) [ce]	*!		*

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV

/ce/	*Cor-Dors	NoVelar+FrV	DENT[COR]
(a) [ce]	*!		
→ (b) [ke]		*	*

/ca/	*Cor-Dors	NoVelar+FrV	IDENT[COR]
(a) [ca]	*!		
→ (b) [ka]			*

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV
 - Outcomes:
 - $/ka/ \rightarrow [ka]$ $/ca/ \rightarrow [ka]$ (default env: [k])
 - $/ke/ \rightarrow [ke] /ce/ \rightarrow [ke] (/[-bk]: [k])$
 - Distribution:

- Ranking (5): *Cor-Dors » NoVel+FrV » Ident[cor]
- Ranking (6): *Cor-Dors » Ident[cor] » NoVel+FrV
 - Outcomes:
 - /ka/ \rightarrow [ka]/ca/ \rightarrow [ka](default env: [k])/ke/ \rightarrow [ke]/ce/ \rightarrow [ke](/_[-bk]: [k])
 - Distribution: **"inventory gap"** (illegal segment) Note that there is no [c] in any output ever
 - 'Special' segment is banned, regardless of context and regardless of input
 - This is how OT handles **absent** segments

• **Summary** of rankings and distribution patterns:

(1)	NoVel+FrV » *Cor-Dors » Ident[cor]	predictable (complementary)
(2)	Ident[cor] » *Cor-Dors » NoVel+FrV	contractivo
(3)	IDENT[COR] » NOVEL+FRV » *COR-DORS	Contrastive
(4)	NoVel+FrV » Ident[cor] » *Cor-Dors	neutralization
(5)	*Cor-Dors » NoVel+FrV » Ident[cor]	invontory gan
(6)	*Cor-Dors » Ident[cor] » NoVel+FrV	inventory gap

- Implications of the OT approach to segmental distribution:
 - If some language has a context-specific allophone and a default ("elsewhere") allophone...
 - ...which one is predicted to be an illegal segment in another language?
- Rule-based phonology does not make this connection

3. Summary: Segmental distribution in OT

- General ranking for _____:
 Context-specific M » Context-free M » F
- General ranking for _____:
 F » { Context-specific M , Context-free M }
- General ranking for _____:
 Context-specific M » F » Context-free M
- General ranking for _____:
 Context-free M » { Context-specific M , F }

3. Summary: Segmental distribution in OT

- General ranking for predictable distribution:
 Context-specific M » Context-free M » F
- General ranking for contrastive distribution:
 F » { Context-specific M , Context-free M }
- General ranking for neutralization:
 Context-specific M » F » Context-free M
- General ranking for inventory gap:
 Context-free M » { Context-specific M , F }

4. Looking ahead

- Any clarification questions on **SC HW #4, 5**?
- Preview of WU #2 (there will be time for questions next class)

- On Tu Dec 3, we will take a general look at phonology in OT
 - Child phonology, revisited
 - Other connections and predictions that OT lets us make
 - Some current questions / research areas