Linguistic Phonetics

- Defining and measuring waves
- Classifying waves
- Properties of simple periodic (sine) waves

Background reading:

- Review V&C Ch 1, sec 1.4 (acoustic properties)
- AAP Ch 1, through the end of sec 1.3.1

0. Today's objectives

After today's class, you should be able to:

- Define a wave, and a sound wave specifically
- Measure basic wave properties and represent them on a graph
- Classify waves into the following categories:
 - Simple periodic waves (sine waves)
 - Complex periodic waves
 - Aperiodic waves
- Calculate the frequency of a periodic wave, given its period

0. Mindset

- If you have prior background in acoustics or even high-school physics, this may be review for you
 - But please note: The next few classes will build on one another quickly, so be sure you are solid on these basic ideas

Introductions from anyone who didn't have a chance on Friday

Any questions about consonant or vowel IPA symbols?

True or false?

One subfield of phonetics is concerned with how the vocal organs move to produce each letter in a word.

True or false?

One subfield of phonetics is concerned with how the vocal organs move to produce each **letter** in a word.

Always remember:

SOUNDS, NOT LETTERS

- *V&C* Ch 1, sec 1.4, introduces basic terminology about sound waves and their properties:
 - How does V&C define sound wave?
 - What physical property corresponds to...
 - the pitch of a sound wave?
 - the loudness of a sound wave?
 - the quality (timbre) of a sound wave?

- *V&C* Ch 1, sec 1.4, introduces basic terminology about sound waves and their properties:
 - How does *V&C* define **sound wave**?
 "a small but rapid variation in air pressure spreading through the air" (p 7)

How does AAP define a **wave**?

A wave is a

- _____

- that _____
- through a _____

- A wave is a
 - traveling (pressure) fluctuation
 - that propagates
 - through a medium that is elastic enough to allow the fluctuation
- What are some real-life examples of waves?
 Describe them in the above terms:
 - What is the **medium**?
 - What property of the medium is **fluctuating**?

- A wave is a traveling fluctuation that propagates through a medium
- See these <u>wave animations</u>

by Dan Russell, Graduate Program in Acoustics, Penn State

- People doing "the wave"
- Air molecules inside a tube
- A pulse of displacement moving along a string

- A wave is a traveling fluctuation that propagates through a medium
- Important: The **fluctuation** propagates; the pieces of the **medium** do not
 - When **sports fans** do "the wave", they stay in their own seats
 - When **air molecules** vibrate, they move slightly back and forth, but they don't travel to the end of the tube

What is sound?
 In AAP, p 7, Johnson defines sound as a sensation
 Motion of object →
 pressure fluctuations in medium →
 pressure fluctuations reach eardrum →
 neural transmission →
 perception/sensation of sound

If a tree falls in the forest when no one is there, does it make a **sound** (according to this definition)?

Where is the sound wave in this chain of events?

```
Motion of object →
pressure fluctuations in medium →
pressure fluctuations reach eardrum →
neural transmission →
perception/sensation of sound
```

Where is the sound wave in this chain of events?

```
Motion of object →

pressure fluctuations in medium →

pressure fluctuations reach eardrum →

neural transmission →

perception/sensation of sound
```

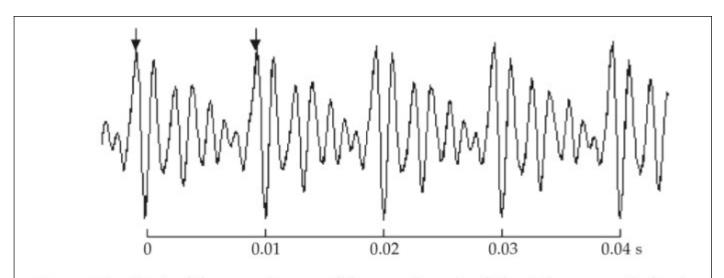
- If a tree falls in the forest when no one is there, does it make a **sound wave**?
- Note: there can be no sound without motion

- Think about waves in water
 - What is the **medium**? the water
 - What is the **fluctuation**?

How could we describe (graph) waves in a lake?

- Think about waves in water
 - What is the **medium**? the water
 - What is the **fluctuation**? the *height* of the water above/below the *resting state*
- How could we describe (graph) waves in a lake?
 - Look at this <u>animation</u>
 by Dan Russell, Graduate Program in Acoustics, Penn State
 - What does each **graph** of the wave represent?

Note: You are not responsible for knowing the formula at the top of the page


- How could we describe (graph) waves in a lake?
 - We could plot water height by distance from the disturbance at a single point in time (like a photograph of the water surface)
 - This is the graph on the right

- How could we describe (graph) waves in a lake?
 - We could plot water height over time for a single point in space (imagine watching a measuring stick on the end of a dock in the lake)
 - This is the graph on the left

 Always look at the axes on a graph when you are trying to interpret what it shows

- Sound waves are different from water waves: sound waves are pressure waves
 - Look again: <u>Animation</u> of air inside a tube by Dan Russell, Graduate Program in Acoustics, Penn State
- But, as with the water example, we can measure and graph sound waves in two different ways
 - Air pressure by distance from the source at a single point in time
 - Air pressure by time at a single point in space
- Which of these is what a microphone does?

Look at V&C Figure 1.1 (p 7):

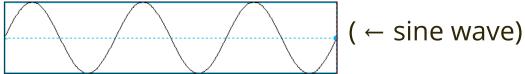
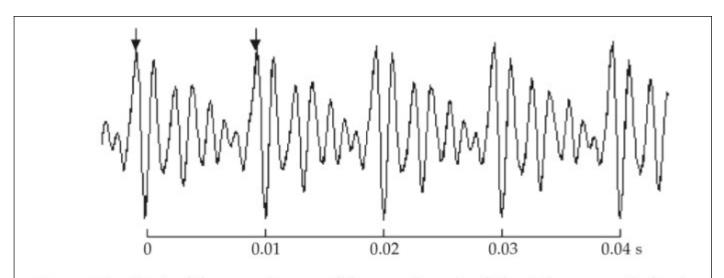


Figure 1.1 Part of the sound wave of the vowel a as in *father*. The arrows indicate a section that is repeated every one-hundredth of a second.

- This is a sound wave (the axes aren't explicitly labeled)
 - How does this display show that there is a fluctuation in a medium?

4. Classifying waves

- Periodic has a repeating pattern
 - **Simple periodic** a sine wave | *details today*



Complex periodic — any other repeating pattern | details next class

- Aperiodic no repeating pattern | details later
 - Noise aperiodic sound that persists in time
 - Transient instantaneous aperiodic sound

4. Classifying waves

Look at V&C Figure 1.1 (p 7):

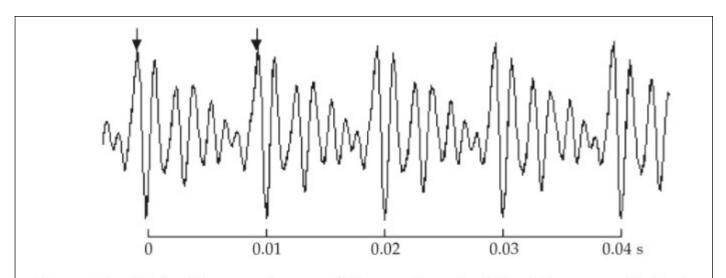


Figure 1.1 Part of the sound wave of the vowel a as in *father*. The arrows indicate a section that is repeated every one-hundredth of a second.

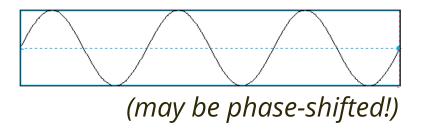
- Periodic or aperiodic?
- Simple or complex?

4. Classifying waves

Look at V&C Figure 1.1 (p 7):

Figure 1.1 Part of the sound wave of the vowel a as in *father*. The arrows indicate a section that is repeated every one-hundredth of a second.

- Periodic or aperiodic? | repeating pattern?
- Simple or complex? | sine wave, or other?


5. Properties of periodic waves

To describe a periodic wave (for speech analysis),
 the most relevant properties are...

Physical property (acoustics)	Human perception
frequency	pitch
amplitude	loudness
wave shape	quality (timbre)

These factors can vary independently

 A simple periodic wave has the shape of a sine wave

- Not many real-world sound waves are sine waves
- But, as we will soon see, complex periodic waves can be described in terms of sine waves
 - → We need to understand the **properties** of sine waves for doing acoustic analysis

 Three properties are needed to define (describe) a simple periodic wave:

Frequency Amplitude Phase

- Why don't we need to describe the shape?

- Three properties are needed to define (describe) a simple periodic wave:
 - **Frequency** how often the wave repeats per a given unit of time | *see more below*
 - For sound waves, frequency is perceived by a listener as pitch: high-frequency sound waves have a high pitch

Amplitude Phase

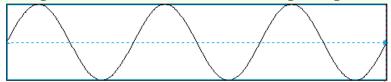
 Three properties are needed to define (describe) a simple periodic wave:

Frequency

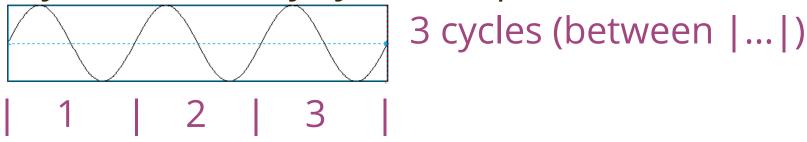
Amplitude — the maximum (positive and negative) displacement of the medium by the wave

- For sound waves, amplitude is perceived by a listener as loudness
- We will be most concerned with *relative* amplitude, not specific amplitude values

Phase


 Three properties are needed to define (describe) a simple periodic wave:

Frequency


Amplitude

- Phase Relative timing; two waves with the same frequency are in phase if their max and min amplitudes occur at the same time
 - For sound waves, the phase (timing) of an individual wave doesn't really affect how it is perceived
 - Phase will become more important later, when we look at standing waves, reflection, and resonances

- The fundamental frequency of any periodic wave (simple or complex) is the number of cycles in a given time interval
 - One **cycle** is one **repetition** of the wave pattern
 - For a simple periodic wave, the repeating pattern includes one "peak" and one "trough" be careful to measure the whole cycle
 - Try it: How many cycles are pictured here?

- The fundamental frequency of any periodic wave (simple or complex) is the number of cycles in a given time interval
 - One **cycle** is one **repetition** of the wave pattern
 - For a simple periodic wave, the repeating pattern includes one "peak" and one "trough" be careful to measure the whole cycle
 - Try it: How many cycles are pictured here?

- We will often need to measure or calculate the (fundamental) frequency of a speech sound
 - There are several ways to measure frequency using Praat tools (you will learn some in upccoming labs)
 - For today, we will learn to measure frequency from the waveform — an amplitude × time graph (remember the float in the lake)

Calculating a wave's frequency from its period

- The period of a (periodic) wave, T, is the time it takes for one cycle to occur
- The **frequency**, f, is the **reciprocal** of the period f=1/T
- Measure period in seconds (s) or milliseconds (ms)
 - -1s = 1000ms
- Measure frequency in hertz (Hz)
 - Hertz equals "cycles per second"; 1Hz = 1/s

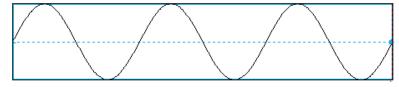
Calculating a wave's frequency from its period

- How this works, conceptually:
 - The #37 bus runs continuously all day
 It takes the bus 15 minutes to run its route once
 How many times per hour does the bus run?

Calculating a wave's frequency from its period

- How this works, conceptually:
 - The #37 bus runs continuously all day It takes the bus 15 minutes to run its route once
 - \rightarrow Period (T) = 15 min = 0.25 h

How many times per hour does the bus run?

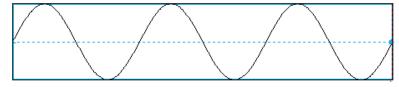

- → 4 times per hour
- Figure it out by dividing 1/T:

$$f = 1/T = 1/(0.25 \text{ h}) = 4/\text{h} \mid 4 \text{ per hour}$$

- Note: having "h" in the denominator means <u>per</u> hour

Calculating a wave's frequency from its period

- Now try a sound wave it works the same way
 - Suppose the time axis shows 0.075 s

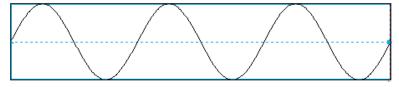


Remember, there are 3 cycles of the wave here

- First, what is the **period** of this wave? **T**=...?

Calculating a wave's frequency from its period

- Now try a sound wave it works the same way
 - Suppose the time axis shows **0.075** s



Remember, there are 3 cycles of the wave here

- $\mathbf{T} = (0.075 \text{ s})/(3 \text{ cycles}) = 0.025 \text{ s/cycle}$
- Next, what is the **frequency** of this wave? **f** =...?

Calculating a wave's frequency from its period

- Now try a sound wave it works the same way
 - Suppose the time axis shows **0.075** s

Remember, there are 3 cycles of the wave here

- $\mathbf{T} = (0.075 \text{ s})/(3 \text{ cycles}) = 0.025 \text{ s/cycle}$
- $\mathbf{f} = 1/T = 1/(0.025 \text{ s/cycle}) = 40 \text{ cycles/s}$
- "Cycles per second" = Hertz, so, f = 40 Hz

* Remember to report <u>units</u> when doing a calculation *

8. For next class

- Try comparing frequency, amplitude, shape for two sound waves (prep questions)
- We will discuss complex periodic waves and how they can be analyzed in terms of simple waves