Linguistic Phonetics

- Standing waves
- Resonances

Background reading and web activities:

- AAP Ch 2, sec 2.1, second half
- "...Standing Wave Diagrams 1" (Zona Land) "Wave Interference 2" (Zona Land)

0. Today's plan

- Standing waves
- Resonances
- Boundary conditions
 - On a string
 - In a tube
- Calculating resonance wavelengths

In the discussion this week, we will **emphasize the concepts** before introducing the formulas.

You can remember (or reinvent) the formulas more easily if you understand the concepts!

Upcoming labs will give you a chance to practice **applying** the concepts (and the formulas).

- Why does a real-world object vibrate in a way that produces complex waves?
 - Objects have **multiple modes of vibration**
 - This is because multiple waves "fit" an object

- Why does a real-world object vibrate in a way that produces complex waves?
 - Objects have **multiple modes of vibration**
 - This is because multiple waves "fit" an object
- <u>"Violin string" demo</u>, Zona Land (also seen last week)
 - String vibrates with "one loop", "two loops", etc.
 - Each vibration pattern → **one sine wave**
 - When **multiple** vibration patterns are present, their sine waves are **added together**

 \rightarrow What do we get when sine waves are added?

- What "size" waves will "fit" a vibrating object?
 - A wave that "fits" a particular object is called a **resonance** of that object
 - A resonance forms a **standing wave**: an oscillating pattern, stable in space over time
- What does a standing wave look like?
 See web demo "<u>Wave Interference 2</u>" (Zona Land)
 - Setting "Sinusoid 6" creates a standing wave
 - Compare "Sinusoid 8": not a standing wave

- Standing waves arise because of reflection and interference
- We will not pursue this in detail; think of it this way:
 - When a "right-size wave" *reflects* from the edge of the object, the outgoing and returning waves *interfere* in a way that makes a standing wave (stable oscillation)
 - When a "wrong-size wave" *reflects* from the edge of the object, the outgoing and returning waves *interfere* in a way that is not a stable oscillation

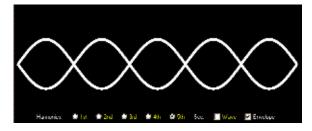
- Warning: Standing-wave diagrams are graphs showing amplitude by <u>distance</u>
 - This is like the snapshot of the waves on the surface of a lake, showing water height at different physical locations
 - This is **not** like a typical waveform plot of a sound wave, which plots amplitude by <u>time</u> at a fixed location
- *This is useful!* The resonances of a tube of air (like the vocal tract!) depend on its **physical length**, which we can measure or calculate

- Some key terminology:
 - node physical position on standing wave that always has zero amplitude

= location in space where a wave and its reflection always *cancel each other out*

 antinode — physical position on standing wave with maximum amplitude change from zero (includes both positive and negative extreme values)
 = location in space where a wave and its reflection maximally reinforce each other

- Standing-wave diagrams typically show the envelope of the standing wave
 - This shows the *maximum* amplitude reached at each physical position along the wave
 - See web demo "<u>Understanding Standing Wave</u> <u>Diagrams 1</u>" (Zona Land)
- Can you identify the **nodes** and **antinodes** on a standing-wave diagram?



(from the demo linked above)

So far, we've considered these ideas:

- Why does a real-world object vibrate in a way that produces complex waves?
 - Objects have **multiple modes of vibration**
 - Why?

So far, we've considered these ideas:

- Why does a real-world object vibrate in a way that produces complex waves?
 - Objects have **multiple modes of vibration**
 - This is because multiple waves "fit" an object

What "size" waves will "fit" a vibrating object?

So far, we've considered these ideas:

- Why does a real-world object vibrate in a way that produces complex waves?
 - Objects have **multiple modes of vibration**
 - This is because **multiple waves "fit" an object**

What "size" waves will "fit" a vibrating object?

- A wave "fits" if it forms a **standing wave**: an oscillating pattern, stable in space over time
 - Such a wave is called a **resonance** of that object

2. Resonances

- Next, we want to be able to determine what the resonances ("waves that fit") of a particular object actually are
 - We will talk about **strings** first (easy to visualize)
 - But our main focus will be on **air in a tube**
- Preview: **Speech-sound analyses** that depend on resonance frequencies of **air in a tube** will include:
 - Vowel formants (indicate height, backness, rounding)
 - *Consonant place of articulation (affects vowel formants)*
 - Fricative noise spectra / stop burst spectra
 - Acoustic signatures of nasals and laterals

2. Resonances

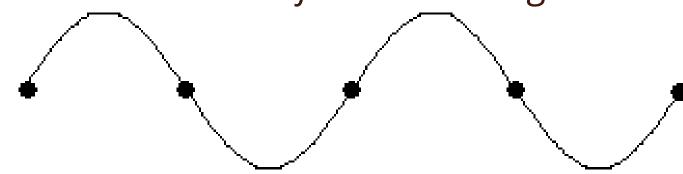
- We can model the multiple modes of vibration of a string, or of air in a tube
 - To do this, we determine the wavelength of each of the resonances of the system, based on the physical size of the system
 - Then (for air in a tube) we can calculate the frequency of each of the resonances

2. Resonances

- The "compatible waves" ("waves that fit") for a string or a tube are determined by
 - its **length**
 - its **boundary conditions**
- Boundary conditions: For each end of the string or tube, is it a node or an antinode?
 - <u>String</u>: Is the end *fixed* (node) or *free* (antinode)?
 - <u>Tube</u>: Is the end *open* (node of pressure wave) or *closed* (antinode of pressure wave)?

- A string, fixed at both ends: Node/node system
 - At a point where a string is **fixed**, its
 displacement *can only be zero* = **node**
 - If **both ends** of the string are **fixed**, what are the "compatible waves" for this system?

- A string, fixed at both ends: Node/node system
 - At a point where a string is **fixed**, its
 displacement *can only be zero* = **node**
 - If **both ends** of the string are **fixed**, what are the "compatible waves" for this system?

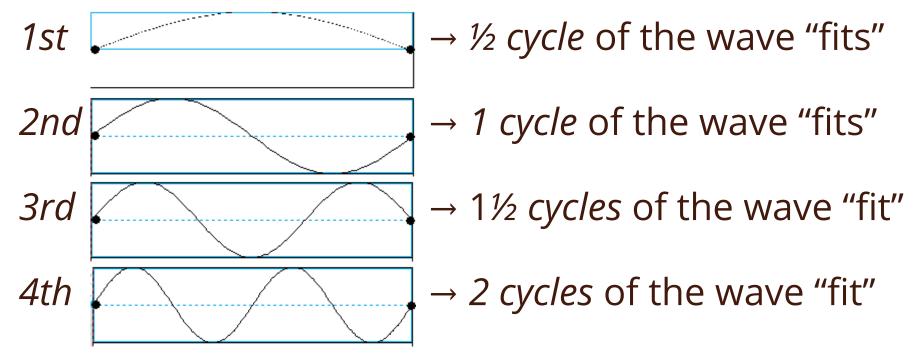


- A string, fixed at both ends: Node/node system
 - At a point where a string is **fixed**, its
 displacement *can only be zero* = **node**
 - If **both ends** of the string are **fixed**, what are the "compatible waves" for this system?
- Here is the **first** resonance (*longest* wavelength):

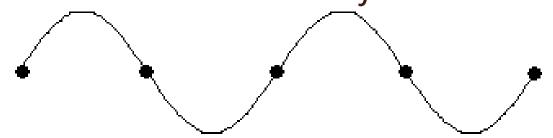
 $\rightarrow \frac{1}{2}$ cycle of the wave "fits"

What are the rest?

- A string, fixed at both ends: Node/node system, also called a half-wavelength system (why?)
- Here are the first four **resonances**

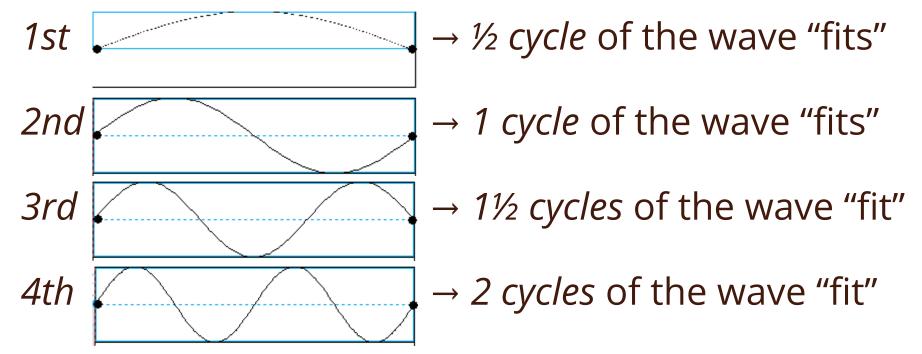


- A tube, open at both ends: Node/node system
 - At a point where a tube is **open**, the air pressure interfaces with the outside world, so the pressure displacement *can only be zero* = **node**
 - If **both ends** of the tube are **open**... *"How much wave" can fit in the tube?*



 See web demo "<u>Standing Sound Waves</u>" for more about pressure waves in a tube and standing-wave diagrams — the red graph in that demo shows the pressure wave

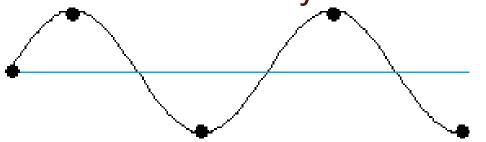
- A tube, open at both ends: Node/node system, also called a half-wavelength system
 - Exactly like the string case discussed above!
- Here are the first four **resonances**



- A tube, open at one end and closed at the other: Node/antinode system
 - **Open** end: A pressure-wave **node** (see above)
 - Closed end: The reflecting waves will create a region of *maximum compression* alternating with *maximum rarefaction* → pressure-wave **antinode**
- Optional: For more about the reflection of pressure waves in tubes, see web demo "<u>Animations of sound waves in open</u> <u>and closed tubes</u>" (UNSW)
 - What happens at the edges when the wave reflects?

- A tube, open at one end and closed at the other: Node/antinode system
 - **Open** end: A pressure-wave **node**
 - **Closed** end: A pressure-wave **antinode**

"How much wave" can fit in the tube?

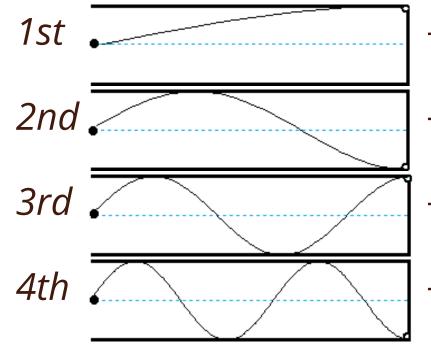


- A tube, open at one end and closed at the other: Node/antinode system
 - **Open** end: A pressure-wave **node**
 - **Closed** end: A pressure-wave **antinode**
- Here is the **first** resonance (*longest* wavelength):

→ ¼ cycle of the wave "fits"

What are the rest?

- A tube, open at one end and closed at the other: Node/antinode system, also called a quarter-wavelength system (why?)
- Here are the first four **resonances**



- → ¼ cycle of the wave "fits"
- \rightarrow 3/4 cycle of the wave "fits"
- \rightarrow 1¼ cycles of the wave "fit"
- \rightarrow 1³/₄ cycles of the wave "fit"

- If we know
 - the **length** of the string or tube (*L*)
 - "how much wave" fits on the string or tube for the nth resonance
- We can calculate the wavelength λ_n for the *n*th resonance

 Consider the first resonance of a node/node (half-wavelength) system

 $\rightarrow \frac{1}{2}$ cycle of the wave "fits"

 If the string or tube is length L, what is the **wavelength** of the first resonance (λ₁)?

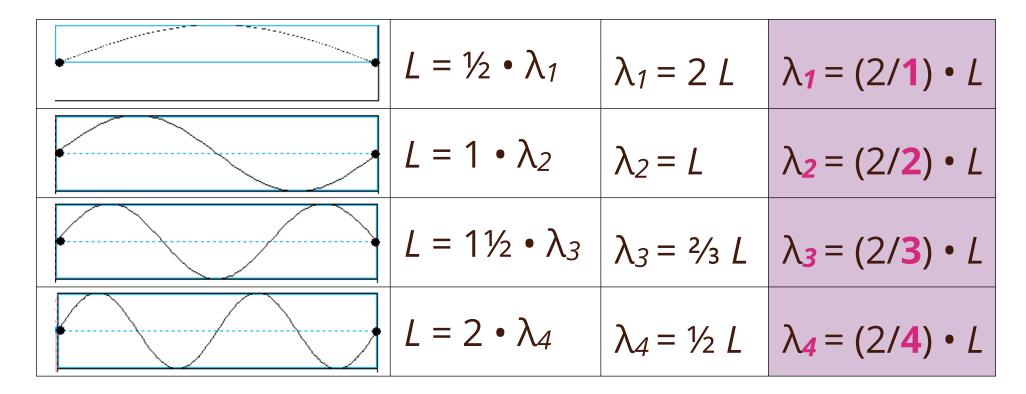
 Consider the **first resonance** of a **node/node** (half-wavelength) system

 $\rightarrow \frac{1}{2}$ cycle of the wave "fits"

- If the string or tube is length *L*, what is the **wavelength** of the first resonance (λ_1) ?
 - L fits half of the wave
 - *L* is half as long as λ_1

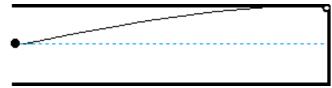
$$\lambda_1 = 2L$$

• **Node/node** (half-wavelength) system Tube or string of length *L*



• General formula: $\lambda_n = (2/n) L$ or $\lambda_n = 2L/n$

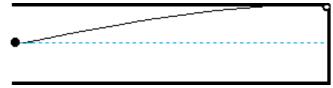
 Consider the first resonance of a node/antinode (quarter-wavelength) system



→ ¼ cycle of the wave "fits"

If the tube is length L,
 what is the wavelength of the first resonance (λ₁)?

 Consider the first resonance of a node/antinode (quarter-wavelength) system

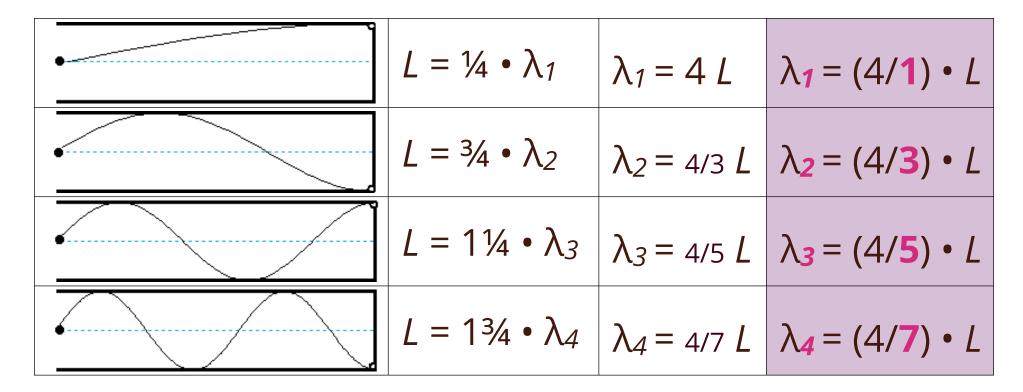


→ ¼ cycle of the wave "fits"

- If the tube is length L,
 what is the wavelength of the first resonance (λ₁)?
 - L fits one quarter of the wave
 - *L* is one quarter as long as λ_1

$$\lambda_1 = 4L$$

• **Node/antinode** (quarter-wavelength) system Tube of length *L*



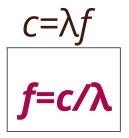
• General formula: $\lambda_n = (4/(2n-1)) \cdot L$ or $\lambda_n = 4L / (2n-1)$

- Finally!—the **frequencies** of the resonances are what we really want to know
 - Knowing the resonance frequencies of a tube of air (in the vocal tract) helps us **model the** acoustics of speech sounds
- *Example:* Soon we will learn about the **source-filter model** of speech acoustics as applied to **vowels**
 - The **source** is the glottal-source wave
 - The filter is determined by the resonance frequencies of the vocal tract

- Wavelength (λ) and frequency (f) are related:
 - **c=**λ**f**
 - where *c* is the speed of the wave (about 350 m/s for sound in air, according to AAP)
- Wavelength and frequency are *inversely* related
 - **Long** wavelength means **low** frequency
 - **Short** wavelength means **high** frequency

Imagine traffic moving by at a steady 35 mph. Many VW bugs (short) would go by in 1 minute (higher frequency), but few buses (long) would go by in 1 minute (lower frequency).

• If we know wavelength, we can solve for frequency



- Find the **frequency** of the **nth resonance** (**f**_n):
 - Plug the wavelength λ_n into the formula
 - Solve for f_n

- For a **node/node** system with tube of length *L*
 - $\lambda_n = 2L/n$ | relates wavelength to tube length $f_n = c/\lambda_n$ | relates frequency to wavelength $f_n = c / (2L/n)$ | relates frequency to tube length $f_n = n \cdot c/2L$
- Shortcut! Once you know the 1st resonance f_1 : $f_n = n \cdot f_1$
- → The resonance frequencies in a **node/node** system are **whole-number multiples** of f_1

- For a **node/antinode** system with tube of length *L*
 - $\lambda_n = 4L / (2n-1)$ $f_n = c/\lambda_n$ $f_n = c / (4L / (2n-1))$ $f_n = (2n-1) \cdot c / 4L$

relates wavelength to tube lengthrelates frequency to wavelengthrelates frequency to tube length

• Shortcut! Once you know the 1st resonance f_1 : $f_n = (2n-1) \cdot f_1$

→ The resonance frequencies in a **node/antinode** system are **odd-numbered multiples** of f_1