
Linguistic Phonetics  M Aug 29

• Standing waves   
• Resonances

Background reading and web activities:

• AAP Ch 2, sec 2.1, second half 
• “...Standing Wave Diagrams 1” (Zona Land) 

“Wave Interference 2” (Zona Land)
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0. Today’s plan

• Standing waves

• Resonances

• Boundary conditions  
- On a string
- In a tube

• Calculating resonance wavelengths
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0. Today’s plan

In the discussion this week, we will emphasize the 
concepts before introducing the formulas.  

You can remember (or reinvent) the formulas 
more easily if you understand the concepts!  

Upcoming labs will give you a chance to practice 
applying the concepts (and the formulas).
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1. Standing waves

• Why does a real-world object vibrate in a way that 
produces complex waves? 
- Objects have multiple modes of vibration
- This is because multiple waves “fit” an object
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1. Standing waves

• Why does a real-world object vibrate in a way that 
produces complex waves? 
- Objects have multiple modes of vibration
- This is because multiple waves “fit” an object

• “Violin string” demo, Zona Land (also seen last week)

- String vibrates with “one loop”, “two loops”, etc.
- Each vibration pattern  → one sine wave
- When multiple vibration patterns are present, 

their sine waves are added together 
 → What do we get when sine waves are added?
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http://zonalandeducation.com/mstm/physics/waves/standingWaves/standingWaves1/StandingWaves1.html


1. Standing waves

• What “size” waves will “fit” a vibrating object? 
- A wave that “fits” a particular object is called a 

resonance of that object
- A resonance forms a standing wave:  an 

oscillating pattern, stable in space over time 

• What does a standing wave look like?  
See web demo “Wave Interference 2” (Zona Land)

- Setting “Sinusoid 6” creates a standing wave
- Compare “Sinusoid 8”:  not a standing wave 
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http://zonalandeducation.com/mstm/physics/waves/interference/waveInterference2/WaveInterference2.html


1. Standing waves

• Standing waves arise because of reflection and 
interference 

• We will not pursue this in detail; think of it this way:
- When a “right-size wave” reflects from the edge of the 

object, the outgoing and returning waves interfere in a 
way that makes a standing wave (stable oscillation)

- When a “wrong-size wave” reflects from the edge of the 
object, the outgoing and returning waves interfere in a 
way that is not a stable oscillation
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1. Standing waves

• Warning:  Standing-wave diagrams are graphs 
showing amplitude by distance
- This is like the snapshot of the waves on the 

surface of a lake, showing water height at 
different physical locations

- This is not like a typical waveform plot of a 
sound wave, which plots amplitude by time at a 
fixed location

• This is useful!  The resonances of a tube of air (like the
vocal tract!) depend on its physical length, which we 
can measure or calculate
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1. Standing waves

• Some key terminology: 
- node — physical position on standing wave that 

always has zero amplitude 
= location in space where a wave and its 
reflection always cancel each other out 

- antinode — physical position on standing wave 
with maximum amplitude change from zero 
(includes both positive and negative extreme values) 
= location in space where a wave and its 
reflection maximally reinforce each other 
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1. Standing waves

• Standing-wave diagrams typically show the 
envelope of the standing wave
- This shows the maximum amplitude reached at 

each physical position along the wave
- See web demo “Understanding Standing Wave 

Diagrams 1” (Zona Land) 

• Can you identify the nodes and antinodes on a 
standing-wave diagram?

 (from the demo linked above)
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http://zonalandeducation.com/mstm/physics/waves/standingWaves/understandingSWDia1/UnderstandingSWDia1.html
http://zonalandeducation.com/mstm/physics/waves/standingWaves/understandingSWDia1/UnderstandingSWDia1.html


2. Resonances

So far, we’ve considered these ideas:

• Why does a real-world object vibrate in a way that 
produces complex waves? 
- Objects have multiple modes of vibration
- Why?
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2. Resonances

So far, we’ve considered these ideas:

• Why does a real-world object vibrate in a way that 
produces complex waves? 
- Objects have multiple modes of vibration
- This is because multiple waves “fit” an object

What “size” waves will “fit” a vibrating object?
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2. Resonances

So far, we’ve considered these ideas:

• Why does a real-world object vibrate in a way that 
produces complex waves? 
- Objects have multiple modes of vibration
- This is because multiple waves “fit” an object

What “size” waves will “fit” a vibrating object?

• A wave “fits” if it forms a standing wave:  an 
oscillating pattern, stable in space over time
- Such a wave is called a resonance of that object
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2. Resonances

• Next, we want to be able to determine what the 
resonances (“waves that fit”) of a particular object 
actually are
- We will talk about strings first (easy to visualize)
- But our main focus will be on air in a tube

• Preview:  Speech-sound analyses that depend on resonance 
frequencies of air in a tube will include:

- Vowel formants (indicate height, backness, rounding)
- Consonant place of articulation (affects vowel formants)
- Fricative noise spectra / stop burst spectra
- Acoustic signatures of nasals and laterals
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2. Resonances

• We can model the multiple modes of vibration of 
a string, or of air in a tube
- To do this, we determine the wavelength of 

each of the resonances of the system, based on 
the physical size of the system

- Then (for air in a tube) we can calculate the 
frequency of each of the resonances
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2. Resonances

• The “compatible waves” (“waves that fit”) for a string 
or a tube are determined by
- its length 
- its boundary conditions

• Boundary conditions:  For each end of the string 
or tube, is it a node or an antinode?
- String:  Is the end fixed (node) or free 

(antinode)?
- Tube:  Is the end open (node of pressure wave) 

or closed (antinode of pressure wave)? 
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3. Boundary conditions (1):  Node/node

• A string, fixed at both ends:  Node/node system
- At a point where a string is fixed, its 

displacement can only be zero = node
- If both ends of the string are fixed, what are the

“compatible waves” for this system? 
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3. Boundary conditions (1):  Node/node

• A string, fixed at both ends:  Node/node system
- At a point where a string is fixed, its 

displacement can only be zero = node
- If both ends of the string are fixed, what are the

“compatible waves” for this system? 

“How much wave” can fit on the string?
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3. Boundary conditions (1):  Node/node

• A string, fixed at both ends:  Node/node system
- At a point where a string is fixed, its 

displacement can only be zero = node
- If both ends of the string are fixed, what are the

“compatible waves” for this system? 

• Here is the first resonance (longest wavelength):
 → ½ cycle of the wave “fits”

    What are the rest?
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3. Boundary conditions (1):  Node/node

• A string, fixed at both ends:  Node/node system, 
also called a half-wavelength system (why?)

• Here are the first four resonances
1st  → ½ cycle of the wave “fits”

2nd  → 1 cycle of the wave “fits”

3rd  1→ ½ cycles of the wave “fit”

4th  → 2 cycles of the wave “fit”
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3. Boundary conditions (1):  Node/node

• A tube, open at both ends:  Node/node system
- At a point where a tube is open, the air pressure 

interfaces with the outside world, so the 
pressure displacement can only be zero = node

- If both ends of the tube are open... 
“How much wave” can fit in the tube?

• See web demo “Standing Sound Waves” for more about 
pressure waves in a tube and standing-wave diagrams — the
red graph in that demo shows the pressure wave
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https://www.acs.psu.edu/drussell/Demos/StandingWaves/StandingWaves.html


3. Boundary conditions (1):  Node/node

• A tube, open at both ends:  Node/node system,  
also called a half-wavelength system
- Exactly like the string case discussed above!

• Here are the first four resonances
1st  → ½ cycle of the wave “fits”

2nd  → 1 cycle of the wave “fits”

3rd  → 1½ cycles of the wave “fit”

4th  → 2 cycles of the wave “fit”
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3. Boundary conditions (2):  Node/antinode

• A tube, open at one end and closed at the other:     
Node/antinode system
- Open end:  A pressure-wave node (see above)
- Closed end:  The reflecting waves will create a 

region of maximum compression alternating with 
maximum rarefaction  pressure-wave → antinode 

• Optional:  For more about the reflection of pressure waves in 
tubes, see web demo “Animations of sound waves in open 
and closed tubes” (UNSW)

- What happens at the edges when the wave reflects? 
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http://www.phys.unsw.edu.au/jw/flutes.v.clarinets.html#time
http://www.phys.unsw.edu.au/jw/flutes.v.clarinets.html#time


3. Boundary conditions (2):  Node/antinode

• A tube, open at one end and closed at the other:     
Node/antinode system
- Open end:  A pressure-wave node 
- Closed end:  A pressure-wave antinode

“How much wave” can fit in the tube?
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3. Boundary conditions (2):  Node/antinode

• A tube, open at one end and closed at the other:     
Node/antinode system
- Open end:  A pressure-wave node 
- Closed end:  A pressure-wave antinode

• Here is the first resonance (longest wavelength):
 → ¼ cycle of the wave “fits”

    What are the rest?
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3. Boundary conditions (2):  Node/antinode

• A tube, open at one end and closed at the other:     
Node/antinode system, 
also called a quarter-wavelength system (why?)

• Here are the first four resonances
1st  → ¼ cycle of the wave “fits”

2nd  → ¾ cycle of the wave “fits”

3rd  → 1¼ cycles of the wave “fit”

4th  → 1¾ cycles of the wave “fit”
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4. Calculating resonance wavelengths

• If we know
- the length of the string or tube (L)
- “how much wave” fits on the string or tube for  

the nth resonance

• We can calculate the wavelength λn for the 
nth resonance

27 



4. Calculating resonance wavelengths

• Consider the first resonance of a node/node 
(half-wavelength) system

 → ½ cycle of the wave “fits”

• If the string or tube is length L, 
what is the wavelength of the first resonance (λ1)?
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4. Calculating resonance wavelengths

• Consider the first resonance of a node/node 
(half-wavelength) system

 → ½ cycle of the wave “fits”

• If the string or tube is length L, 
what is the wavelength of the first resonance (λ1)?
L fits half of the wave 
L is half as long as λ1

λ1 = 2L
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4. Calculating resonance wavelengths

• Node/node (half-wavelength) system
Tube or string of length L

L = ½ • λ1 λ1 = 2 L λ1 = (2/1) • L

L = 1 • λ2 λ2 = L λ2 = (2/2) • L

L = 1½ • λ3 λ3 =  ⅔ L λ3 = (2/3) • L

L = 2 • λ4 λ4 = ½ L λ4 = (2/4) • L

• General formula:  λn = (2/n) L or λn = 2L/n
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4. Calculating resonance wavelengths

• Consider the first resonance of a node/antinode 
(quarter-wavelength) system

 → ¼ cycle of the wave “fits”

• If the tube is length L, 
what is the wavelength of the first resonance (λ1)?
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4. Calculating resonance wavelengths

• Consider the first resonance of a node/antinode 
(quarter-wavelength) system

 → ¼ cycle of the wave “fits”

• If the tube is length L, 
what is the wavelength of the first resonance (λ1)?
L fits one quarter of the wave 
L is one quarter as long as λ1

λ1 = 4L

32 



4. Calculating resonance wavelengths

• Node/antinode (quarter-wavelength) system
Tube of length L

L = ¼ • λ1 λ1 = 4 L λ1 = (4/1) • L

L = ¾ • λ2 λ2 = 4/3 L λ2 = (4/3) • L

L = 1¼ • λ3 λ3 = 4/5 L λ3 = (4/5) • L

L = 1¾ • λ4 λ4 = 4/7 L λ4 = (4/7) • L

• General formula:  λn = (4/(2n–1))•L or λn = 4L / (2n-1)
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5. Calculating resonance frequencies

• Finally!—the frequencies of the resonances are 
what we really want to know
- Knowing the resonance frequencies of a tube of 

air (in the vocal tract) helps us model the 
acoustics of speech sounds

• Example:  Soon we will learn about the source-filter 
model of speech acoustics as applied to vowels
- The source is the glottal-source wave
- The filter is determined by the resonance 

frequencies of the vocal tract 
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5. Calculating resonance frequencies

• Wavelength (λ) and frequency (f) are related:

c=λf

- where c is the speed of the wave (about 350 m/s 
for sound in air, according to AAP)

• Wavelength and frequency are inversely related
- Long wavelength means low frequency
- Short wavelength means high frequency

Imagine traffic moving by at a steady 35 mph.  Many VW bugs (short) 
would go by in 1 minute (higher frequency), but few buses (long) would 
go by in 1 minute (lower frequency).
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5. Calculating resonance frequencies

• If we know wavelength, we can solve for frequency
c=λf

f=c/λ

• Find the frequency of the nth resonance (fn):
- Plug the wavelength λn into the formula 
- Solve for fn
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5. Calculating resonance frequencies

• For a node/node system with tube of length L
λn = 2L/n | relates wavelength to tube length

fn = c/λn | relates frequency to wavelength

fn = c / (2L/n) | relates frequency to tube length

fn = n • c/2L

• Shortcut!  Once you know the 1st resonance f1 :
fn = n • f1

 T→ he resonance frequencies in a node/node 
system are whole-number multiples of f1
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5. Calculating resonance frequencies

• For a node/antinode system with tube of length L
λn = 4L / (2n–1) | relates wavelength to tube length

fn = c/λn | relates frequency to wavelength

fn = c / (4L / (2n–1)) | relates frequency to tube length

fn = (2n–1) • c / 4L

• Shortcut!  Once you know the 1st resonance f1 :
fn = (2n–1) • f1

 T→ he resonance frequencies in a node/antinode 
system are odd-numbered multiples of f1
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