

- Resonance frequencies
- The glottal source

Background reading:

- AAP Ch 2, sec 2.4
- AAP Ch 2, sec 2.1, first half

0. Today's plan

- Review/check-in
 - Standing waves
 - Resonances
 - Boundary conditions (string, tube)
 - Calculating resonance wavelengths
- Calculating resonance frequencies
- The glottal source

In the discussion this week, we will **emphasize the concepts** before introducing the formulas.

You can remember (or reinvent) the formulas more easily if you understand the concepts!

Upcoming labs will give you a chance to practice **applying** the concepts (and the formulas).

 What is the connection between standing waves and resonances?

- What is the connection between standing waves and resonances?
 - A wave that "fits" a particular object is called a **resonance** of that object
 - A resonance forms a **standing wave**: an oscillating pattern, stable in space over time
- Which of these settings show a standing wave?
 See web demo "<u>Wave Interference 2</u>" (Zona Land)
 - "Sinusoid 4" | "Sinusoid 5" | "Sinusoid 10"

- What are the boundary conditions for...
 - The fixed end of a string
 - The free end of a string
 - The open end of a tube of vibrating air

- The closed end of a tube of vibrating air
- Why?

- What are the boundary conditions for...
 - The fixed end of a string | node
 - The free end of a string | antinode
 - The open end of a tube of vibrating air
 | (pressure) node / (displacement) antinode
 - The closed end of a tube of vibrating air
 | (pressure) antinode / (displacement) node
- Why? | physical conditions determine this!

• If this is a standing wave on a string of length 10cm, what is the wavelength of the standing wave?

(from Zona Land <u>Standing Waves demo</u>)

- Checking in: What are the measurement units of the wavelength, and why?
- How can we calculate the wavelength?

- We can model the multiple modes of vibration of a string, or of air in a tube
 - To do this, we determine the wavelength of each of the resonances of the system, based on the physical size of the system
 - Then (for air in a tube) we can calculate the frequency of each of the resonances

- The resonances ("waves that fit") for a string or a tube are determined by
 - its length
 - its **boundary conditions**

- A **string**, fixed at both ends
 - What are the **boundary conditions**?
 - What does the standing-wave diagram for the first resonance look like? **Why?**

- A **string**, fixed at both ends
 - What are the **boundary conditions**?
 node/node
 - What does the standing-wave diagram for the first resonance look like? **Why?**

- What is the wavelength of this resonance, for a string of length L? **Why?**

- A **tube**, open at one end and closed at the other
 - What are the **boundary conditions**?
 - What does the standing-wave diagram for the first resonance look like? **Why?**

- A **tube**, open at one end and closed at the other
 - What are the **boundary conditions**?
 (pressure) node/antinode | (displacement) A/N
 - What does the standing-wave diagram for the first resonance look like? **Why?**

(pressure wave)

What is the wavelength of this resonance, for a tube of length L? Why?

- A string, fixed at both ends: Node/node system
- What are the **first four** resonances?
 - Hint: Think about the boundary conditions

- A string, fixed at both ends: Node/node system
- What are the **first four** resonances?
 - Hint: Think about the boundary conditions

• Why is this called a **half-wavelength system**?

- A tube, open at one end: Node/antinode system
- What are the **first four** resonances?
 - Hint: Think about the boundary conditions

- A tube, open at one end: Node/antinode system
- What are the **first four** resonances?
 - Hint: Think about the boundary conditions

- → ¼ cycle of the wave "fits"
- \rightarrow 3/4 cycle of the wave "fits"
- → 1¼ cycles of the wave "fit"
- \rightarrow 1³/₄ cycles of the wave "fit"
- Why is this called a **quarter-wavelength system**?

- If we know
 - the **length** of the string or tube (*L*)
 - "how much wave" fits on the string or tube for the nth resonance
- We can calculate the wavelength λ_n for the *n*th resonance

 Consider the first resonance of a node/node (half-wavelength) system

 $\rightarrow \frac{1}{2}$ cycle of the wave "fits"

If the string or tube is length L,
 what is the **wavelength** of the first resonance (λ₁)?

 Consider the **first resonance** of a **node/node** (half-wavelength) system

 $\rightarrow \frac{1}{2}$ cycle of the wave "fits"

- If the string or tube is length *L*, what is the **wavelength** of the first resonance (λ_1) ?
 - L fits half of the wave
 - *L* is half as long as λ_1

$$\lambda_1 = 2L$$

• **Node/node** (half-wavelength) system Tube or string of length *L*

• General formula:

• **Node/node** (half-wavelength) system Tube or string of length *L*

• General formula: $\lambda_n = (2/n) L$ or $\lambda_n = 2L/n$

 Consider the first resonance of a node/antinode (quarter-wavelength) system

→ ¼ cycle of the wave "fits"

If the tube is length L,
 what is the wavelength of the first resonance (λ₁)?

 Consider the first resonance of a node/antinode (quarter-wavelength) system

→ ¼ cycle of the wave "fits"

- If the tube is length L,
 what is the wavelength of the first resonance (λ₁)?
 - L fits one quarter of the wave
 - *L* is one quarter as long as λ_1

$$\lambda_1 = 4L$$

• **Node/antinode** (quarter-wavelength) system Tube of length *L*

General formula:

• **Node/antinode** (quarter-wavelength) system Tube of length *L*

• General formula: $\lambda_n = (4/(2n-1)) \cdot L$ or $\lambda_n = 4L / (2n-1)$

- Finally!—the **frequencies** of the resonances are what we really want to know
 - Knowing the resonance frequencies of a tube of air (in the vocal tract) helps us **model the** acoustics of speech sounds
- *Example:* Soon we will learn about the **source-filter model** of speech acoustics as applied to **vowels**
 - The **source** is the glottal-source wave
 - The filter is determined by the resonance frequencies of the vocal tract

- Wavelength (λ) and frequency (f) are related:
 - *c*=λ*f*
 - where *c* is the speed of the wave (about 350 m/s for sound in air, according to AAP)
- Wavelength and frequency are *inversely* related
 - **Long** wavelength means **low** frequency
 - **Short** wavelength means **high** frequency

Imagine traffic moving by at a steady 35 mph. Many VW bugs (short) would go by in 1 minute (higher frequency), but few buses (long) would go by in 1 minute (lower frequency).

• If we know wavelength, we can **solve for frequency**

- Find the **frequency** of the *n***th resonance (***f***_n):**
 - Reminder: What is *c*?
 - Plug the wavelength λ_n into the formula
 - Solve for f_n

- For a **node/node** system with tube of length *L*
 - $\lambda_n = 2L/n$ relates wavelength to tube length $f_n = c/\lambda_n$ relates frequency to wavelength $f_n = c/(2L/n)$ relates frequency to tube length $f_n = n \cdot c/2L$
- Shortcut! Once you know the 1st resonance f₁:
 f_n = _____

- For a **node/node** system with tube of length *L*
 - $\lambda_n = 2L/n$ | relates wavelength to tube length $f_n = c/\lambda_n$ | relates frequency to wavelength $f_n = c / (2L/n)$ | relates frequency to tube length $f_n = n \cdot c / 2L$
- Shortcut! Once you know the 1st resonance f_1 : $f_n = n \cdot f_1$ | because $f_1 = 1 \cdot c / 2L = c / 2L$
- → The resonance frequencies in a **node/node** system are **whole-number multiples** of f_1

- For a node/antinode system with tube of length L
 - $\lambda_n = 4L / (2n-1)$ $f_n = c / \lambda_n$ $f_n = (2n-1) \cdot c / 4L$

relates wavelength to tube length relates frequency to wavelength $f_n = c / (4L / (2n-1))$ | relates frequency to tube length

 Shortcut! Once you know the 1st resonance f₁: $f_n =$

- For a **node/antinode** system with tube of length *L*
 - $\lambda_n = 4L / (2n-1)$ $f_n = c/\lambda_n$ $f_n = c / (4L / (2n-1))$ $f_n = (2n-1) \cdot c / 4L$

relates wavelength to tube lengthrelates frequency to wavelengthrelates frequency to tube length

• Shortcut! Once you know the 1st resonance f_1 : $f_n = (2n-1) \cdot f_1 \mid \text{because } f_1 = 1 \cdot c \mid 4L = c \mid 4L$

→ The resonance frequencies in a **node/antinode** system are **odd-numbered multiples** of f_1

- What is the relationship between *f*₁ (the first resonance frequency) and *f*₀ (the fundamental frequency of the complex wave itself) for...
 - a **node/node** system?

- a **node/antinode** system?

- What is the relationship between *f*₁ (the first resonance frequency) and *f*₀ (the fundamental frequency of the complex wave itself) for...
 - a **node/node** system?
 - Resonance *f*s = whole-number multiples of *f*₁
 What does this tell us?
 - a **node/antinode** system?
 - Resonance $f_s = odd$ -numbered multiples of f_1 What does this tell us?

4. The glottal source wave

- What is the **glottal source wave**?
 - Also called the **voicing wave**(form) in AAP Ch 2
 - \rightarrow The sound wave produced by _____

4. The glottal source wave

- What is the **glottal source wave**?
 - Also called the **voicing wave**(form) in AAP Ch 2
 - → The sound wave produced by the vibration of the vocal folds
- To actually hear this sound wave, you would have to put a microphone right above the glottis
 - The sound waves of any speech we normally hear are **further modified** by passing through the vocal tract
 - This is the content of the rest of the course!

4. The glottal source wave

- The glottal source wave is a complex wave with the following property:
 - All of the components of this complex wave have frequencies that are **whole-number multiples** of the lowest-component frequency
- How does the fundamental frequency of the glottal source wave relate to the frequency of its lowest component?