Linguistic Phonetics

- Resonance frequencies
- Lab #02 discussion, #03 work time

Background reading and web activities:

- AAP Ch 2, sec 2.1, second half
- "...Standing Wave Diagrams 1" (Zona Land)
 "Wave Interference 2" (Zona Land)

0. Today's objectives

After today's class, you should be able to:

- Calculate the frequency of a sound wave in air (given its wavelength)
- Answer any remaining questions you have about Lab #02

- What is the relationship between standing waves and resonances?
- Why is this important/relevant in the context of our discussion last time?

- What "size" waves will "fit" a vibrating object?
 - A wave that "fits" a particular object is called a resonance of that object
 - A resonance forms a **standing wave**: an oscillating pattern, stable in space over time
- The resonances of a tube of air (like the vocal tract!)
 depend on its physical length, which we can
 measure or calculate

- Some key terminology:
 - node physical position on standing wave that always has zero amplitude
 - = location in space where a wave and its reflection always *cancel each other out*
 - antinode physical position on standing wave with maximum amplitude change from zero (includes both positive and negative extreme values)
 - = location in space where a wave and its reflection *maximally reinforce each other*

 The "compatible waves" ("waves that fit") for a string or a tube are determined by

_

_

- The "compatible waves" ("waves that fit") for a string or a tube are determined by
 - its **length**
 - its boundary conditions
- Boundary conditions:

- The "compatible waves" ("waves that fit") for a string or a tube are determined by
 - its **length**
 - its boundary conditions
- Boundary conditions: For each end of the string or tube, is it a node or an antinode?
 - String: fixed (node) or free (antinode)?
 - Tube: open (node of pressure wave) or closed (antinode of pressure wave)?
- Pressure wave? Review demo "Standing Sound Waves"

Is this a node/node or a node/antinode system?

$L=\frac{1}{2} \cdot \lambda_1$	$\lambda_1 = 2 L$	$\lambda_1 = (2/1) \cdot L$
$L=1 \cdot \lambda_2$	$\lambda_2 = L$	$\lambda_2 = (2/2) \cdot L$
$L=1\frac{1}{2}\cdot\lambda_3$	$\lambda_3 = \frac{2}{3} L$	$\lambda_3 = (2/3) \cdot L$
$L=2 \cdot \lambda_4$	$\lambda_4 = \frac{1}{2} L$	$\lambda_4 = (2/4) \cdot L$

• General formula: $\lambda_n = (2/n) L$ or $\lambda_n = 2L/n$

Is this a node/node or a node/antinode system?

$L = \frac{1}{4} \cdot \lambda_1$	$\lambda_1 = 4 L$	$\lambda_{1} = (4/1) \cdot L$
$L=\frac{3}{4} \cdot \lambda_2$	$\lambda_2 = 4/3 L$	$\lambda_2 = (4/3) \cdot L$
$L=1\frac{1}{4}\cdot\lambda_3$	$\lambda_3 = 4/5 L$	$\lambda_3 = (4/5) \cdot L$
$L=13/4 \cdot \lambda_4$	$\lambda_4 = 4/7 L$	$\lambda_{4} = (4/7) \cdot L$

• General formula: $\lambda_n = (4/(2n-1))\cdot L$ or $\lambda_n = 4L / (2n-1)$

- Finally!—the **frequencies** of the resonances are what we really want to know
 - Knowing the resonance frequencies of a tube of air (in the vocal tract) helps us model the acoustics of speech sounds
- Example: Soon we will learn about the source-filter model of speech acoustics as applied to vowels
 - The source is the glottal-source wave
 - The filter is determined by the resonance frequencies of the vocal tract

- Wavelength (λ) and frequency (f) are related
 Imagine traffic moving by at a steady 35 mph
 - Many VW bugs (short) would go by in 1 minute
 → higher frequency
 - **Few** buses (**long**) would go by in 1 minute
 - → lower frequency

As wavelength goes up, frequency goes _____

- Wavelength (λ), frequency (f) are inversely related
 - As wavelength goes up, frequency goes down
- Specifically, they have this relationship:

- c is the speed of the wave (about 350 m/s for sound in air, according to AAP)
- Long wavelength means low frequency
- Short wavelength means high frequency

If we know wavelength, we can solve for frequency

$$c=\lambda f$$
 $f=c/\lambda$

- Find the **frequency** of the **nth resonance** (f_n):
 - Plug the wavelength λ_n into the formula
 - Solve for f_n

For a node/node system with tube of length L

$$\lambda_n = 2L/n$$
 relates wavelength to tube length $f_n = c/\lambda_n$ relates frequency to wavelength $f_n = c / (2L/n)$ relates frequency to tube length $f_n = n \cdot c/2L$

• Shortcut! Once you know the 1st resonance f_1 :

$$f_n = n \cdot f_1$$

 \rightarrow The resonance frequencies in a **node/node** system are **whole-number multiples** of f_1

For a node/antinode system with tube of length L

$$\lambda_n = 4L / (2n-1)$$
 | relates wavelength to tube length $f_n = c/\lambda_n$ | relates frequency to wavelength | relates frequency to tube length | f_n = c / (4L / (2n-1)) | relates frequency to tube length | f_n = (2n-1) • c / 4L

• Shortcut! Once you know the 1st resonance f_1 :

$$f_n = (2n-1) \cdot f_1$$

 \rightarrow The resonance frequencies in a **node/antinode** system are **odd-numbered multiples** of f_1

3. Checking in on Lab #02

- How do we calculate the f_0 of a complex wave from the frequencies of its components?
 - The general answer is NOT 'look at the spacing between the component frequencies'
 - 1 What is the **general answer**?
 - 2 What is the **special case** where the spacing between the component frequencies also happens to equal f_0 ?

3. Checking in on Lab #02

Any other questions about Lab #02?

4. Upcoming

- Work time on Lab #03
 - Talk to your classmates if you have questions!

- Reading in AAP for Monday's class
 - Remember pressure wave nodes/antinodes are the opposite of displacement (or velocity) nodes/antinodes for longitudinal waves (like air in a tube)