W Sept 17

Linguistic Phonetics

- Vowel articulations
- Spectrograms and vowel formants

Background preparation:

Lab #04, narrow-band and wide-band spectra

Today's objectives

After today's class, you should be able to:

- Classify the vowels [i e a o u] in terms of height,
 backness, and rounding
- Describe the articulations of [i a u] in terms of vocal-tract tubes and constrictions
- Explain what quantities are displayed on a spectrogram, and how it relates to a spectrum
- Explain, conceptally, how time resolution relates to frequency resolution on a spectrum or spectrogram (wide-band vs. narrow-band)

- What are the traditional articulatory descriptions of the commonly occurring vowels [i e a o u]?
 - Use these terms:
 - high, mid, low
 - front, central, back
 - round, unrounded
 - See also V&C, Ch 12, sec 12.1

 What are the traditional articulatory descriptions of the commonly occurring vowels [i e a o u]?

[i] [u]
high front unrounded high back round

[e] [o]
mid front unrounded mid back round

[a] low central unrounded

• *Note:* In the British tradition, the symbol [a] is used for a low **front** vowel, similar to [æ]; this is also official IPA usage. But we will follow typical US practice and use [a] for the low **central** vowel. See <u>S. Wood's discussion</u>.

Vowels are traditionally described in terms of:

- A height dimension, originally thought to refer directly to the height of the highest part of the tongue
- A backness dimension, originally thought to refer directly to the front/back position of the highest part of the tongue
- Rounding (lip rounding)

Watch how these vowels are produced:

- X-ray video of [i e a o u] (no audio), from V&C Figure 12.3, via YouTube
- MRI video of English speakers singing [a e i o u] (in that order), by Matthew Edwards, Shenandoah Conservatory
 - Their low vowel is back [α] rather than central [a]

Can you see which vowels are higher/lower? More front/more back?

- There is certainly some articulatory basis to the traditional categories of **height** and **backness**
 - But not all "high" vowels have an equally "high" tongue, and likewise for backness
 - See sec 12.3 in V&C (optional reading) for a more detailed critique of the view that these terms directly refer to articulatory properties

- "Height" and "backness" actually more directly reflect acoustic properties of vowels, namely, their first few formants
 - Review question: What is a formant?

- "Height" and "backness" actually more directly reflect acoustic properties of vowels, namely, their first few formants
 - Review question: What is a formant?
 - → A resonance frequency of the vocal tract

- The shape of the vocal tract for the vowels [i e a o u]
 diverges from the uniform tube we modeled for [ə]
 - Therefore, modeling their formants involves more than just calculating tube length
- Next class, we will look at two ways of using tubes to model vowel formants beyond [a)
 - The multiple-tube model
 - The perturbation model
- In preparation, we will take a closer look at the vocal-tract shape for these vowels

2. Vocal-tract tubes and constrictions

- See X-ray diagrams and plastic models of the vocal tract for the American English vowels [a i e o u], from the Exploratorium web site
 - As an aside, this is also a nice demo of the source-filter model of vowel acoustics if you listen to the sound files
- How can we describe each vowel's vocal tract shape, in terms of...? (focus on [a i u])
 - **Tubes**: Where is the vocal tract **wide** vs. **narrow**?
 - Constrictions: Which anatomical landmarks are the narrow parts near?

2. Vocal-tract tubes and constrictions

- Constriction in the **pharynx** (vertical part of vocal tract downstream of velum/uvula)
 - Wide tube in front, narrow tube in back
- (i) Constriction at the palate
 - Wide tube in front, small narrow tube in middle,
 wide tube in back
- [u] Constrictions at the **velum** and **lips**
 - (Longer) wide tube in front, small narrow tube in middle, wide tube in back + lip rounding
- We can use our understanding of resonance frequencies in tubes to model vowel formants → next time!

3. From spectrum to spectrogram

Review: What does a spectrum show?

What are the axes on a spectrum display?

3. From spectrum to spectrogram

- Review: What does a spectrum show?
 - For a given point in time,
 - the **components** of a complex wave
 - in terms of their **amplitude** and **frequency**

- What are the axes on a spectrum display?
 - Amplitude as a function of frequency
- There is no time dimension shown on a spectrum why not?

3. From spectrum to spectrogram

- How to show change in the spectrum over time?
 - We need a **3D display** to add a time dimension
 - Rotate the spectrum: frequency on y axis,
 amplitude on z axis (sticking out at you=darkness)
 - Show these rotated spectra one after the other: now **time** is on the **x** axis
 - This is a **spectrogram** (see <u>diagram</u> on *ACP* web site)

- If we want to look at the shape of a complex wave, we need to track the waveform over a certain duration (length of time)
 - This is the **window length** we can set in Praat

- We can look at the waveform for a (relatively) long duration and get its components
 - This gives us good frequency resolution: narrow-band spectrum
 - But bad **time** resolution: if the wave shape changes during our time window, we're essentially getting all the components mixed together

- We can look at the waveform for a (relatively) short duration and get its components
 - This gives us poor frequency resolution: wide-band spectrum
 - Why poor frequency resolution? Essentially, because we are further away from the sharp spectrum lines of an infinitely long complex wave
 - But good **time** resolution: since we are looking at shorter sections of the waveform, we are more sensitive to changes in its shape

- Consider Lab #04: What is easier to see on a...
 - narrow-band spectrum?
 - wide-band spectrum?

- Consider Lab #04: What is easier to see on a...
 - narrow-band spectrum? | components (f₀)
 - wide-band spectrum? | formants!
 - "Poor" frequency resolution is actually helpful when you don't have components right at the resonance frequencies of the vocal tract!
- Sound files *schwa01*, *schwa02*: Did they have the same source, or the same filter?
 - What if we look at a wide-band spectrum?

 Since a spectrogram is a series of spectra over time, we can also have wide-band and narrow-band spectrograms

5. Vowel articulations and acoustics: Formants

- Next time, we will put the pieces together:
 - Back to our five reference vowels, [i e a o u]
 - How do their articulations correspond to tubes (vocal-tract filters)?
 - What do we predict about their resonance frequencies based on these tubes?
 - How can we use a spectrogram to measure their resonance frequencies?

→ PQs for next time will review today's concepts!