

- Vowel acoustics: Summing up
- Preparing for Lab #06: Research questions and hypothesis testing

Background:

- Lab #4
- Lab #5

0. Course info — announcements & reminders

Schedule for this week

M Sept 19: Vowels—summary discussion Preparing for Lab #06

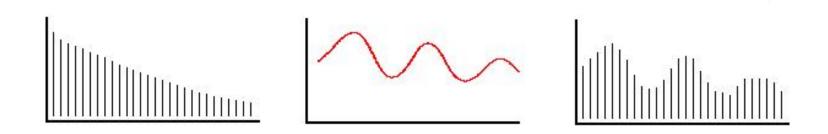
W Sept 21: Lab #06 work time in classroom (with partner group)

F Sept 23: Work time: Lab #06 or CITI training

- You may work in classroom or elsewhere
- Lab #06 due **F Sept 23, 3pm**
- If you are finished early with the lab, use the time to work on the CITI Training for Group 2/Social and Behavioral Research (officially due W Oct 12)

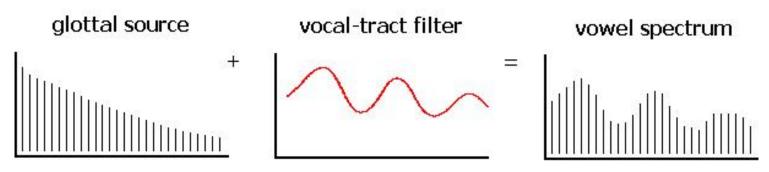
0. Today's discussion

- Review—Glottal source and vocal-tract filter
 - Wide-band vs. narrow-band spectra and spectrograms
- Relating traditional vowel descriptions to F1 and F2
 - Distinguishing [i e a o u] on spectrograms
 - Understanding where F1, F2 patterns come from
- Preparing for Lab #06

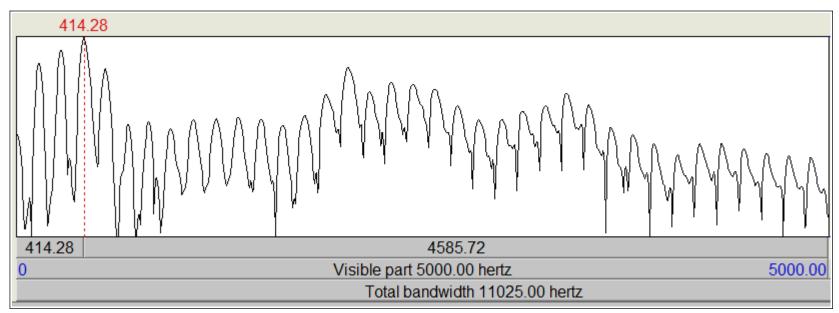

Checking in on some concepts

- We can model [ə] as a uniform tube
 - Calculate the first (lowest) resonance frequency of the vocal-tract tube does this tell us...
 - 1. the fundamental frequency of the [ə]?
 - *2.* the lowest-frequency component on the spectrum of the [ə]?
 - *3.* the lowest-frequency high-amplitude region on the spectrum of the [ə]?
 - 4. the first formant of the [ə]?

Checking in on some concepts

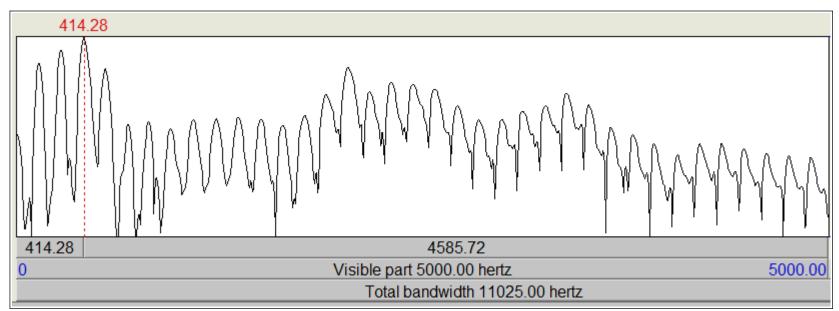

- We can model [ə] as a uniform tube
 - Calculate the first (lowest) resonance frequency of the vocal-tract tube does this tell us...
 - 1. the fundamental frequency of the [ə]? SOURCE
 - 2. the lowest-frequency component on the spectrum of the [ə]? SOURCE
 - 3. the lowest-frequency high-amplitude region on the spectrum of the [ə]? | yes! FILTER
 - 4. the first formant of the [ə]? | yes! FILTER

 Here is a diagram of a vowel spectrum in the source-filter model of speech acoustics (adapted from K. Russell, U Manitoba)


- Which graphic represents the **source**?
- Which graphic represents the **filter**?
- Which graphic represents the **vowel**?
- In general, how does a vowel's f_0 relate to its F1?

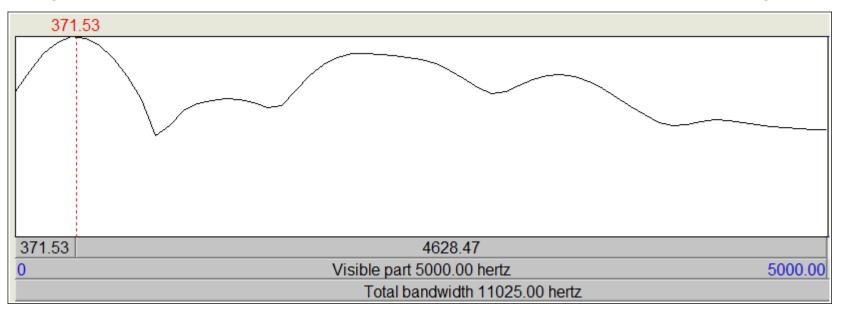
 Here is a diagram of a vowel spectrum in the source-filter model of speech acoustics (adapted from K. Russell, U Manitoba)

- In general, how does a vowel's f₀ relate to its F1?
 IT DOESN'T!
 - f_0 is determined by the _____
 - **F1** is determined by the ____

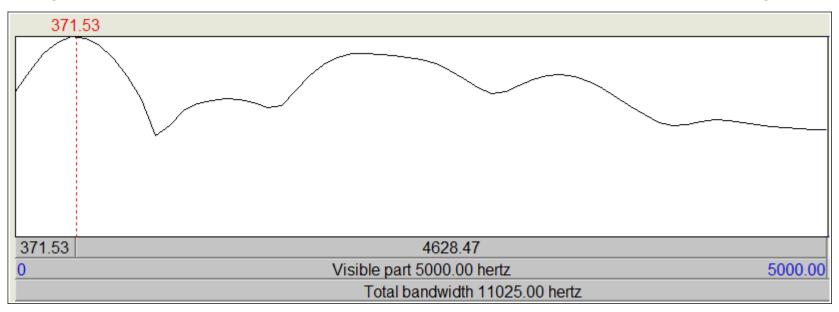

• A spectrum from a naturally produced vowel:

- Where are the glottal-source components?
- What is f_0 ?
- What is F1, approximately?

(Value at cursor is about 414 Hz)


• A spectrum from a naturally produced vowel:

- Where are the glottal-source components?
- What is f_0 ? | 414 Hz / 3 = 138 Hz
- What is F1, approximately? | 414 Hz


This is <u>Hawai'ian [e]</u> from V&C, Ch 3

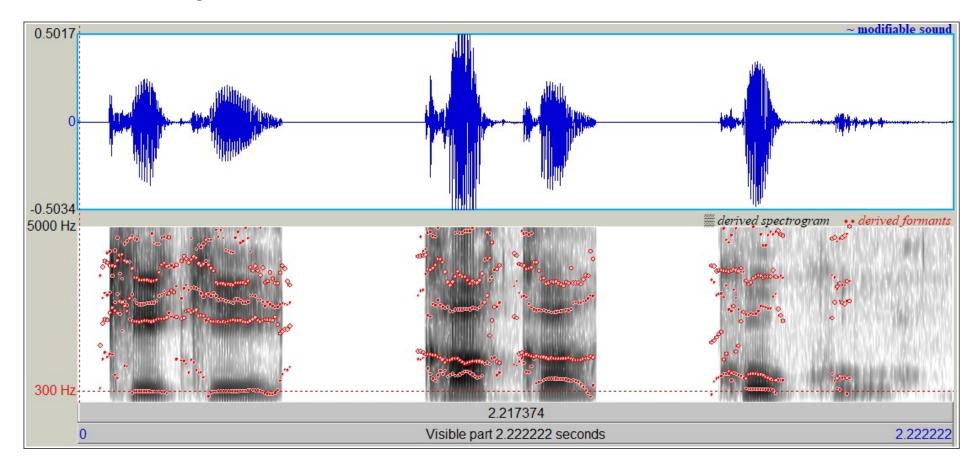
• A spectrum from the *same* vowel, *same* timepoint:

- What is different about this spectrum?
- What is the significance of 372 Hz?
- Why 414 Hz before but 372 Hz here?

• A spectrum from the *same* vowel, *same* timepoint:

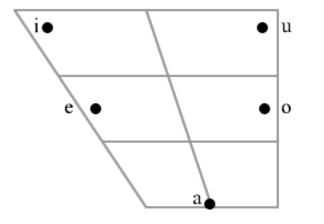
- What is different about this spectrum? |wide-band
- What is the significance of 372 Hz? | F1
- Why 414 Hz before but 372 Hz here? | narrowband spectrum (above) shows each glottal component; there wasn't any component exactly at F1=372 Hz; 414 Hz was the closest one

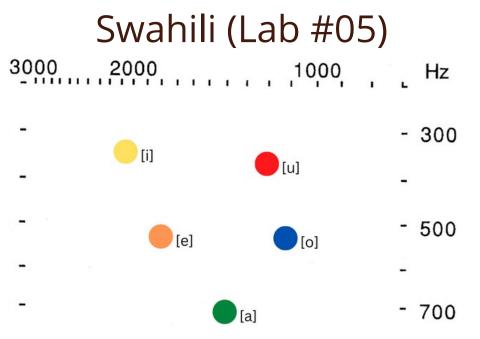
• What is a **spectrogram**?


- What is a **spectrogram**?
 - A **spectrum** shows *amplitude by frequency*
 - A **spectrogram** *turns the spectrum sideways* and adds the time dimension
 - **Frequency** is now on the *y* axis
 - Amplitude is now on the *z* axis (pointing out — darker gray means higher amplitude)
 - **Time** is on the *x* axis think of lots of sideways spectra lined up to show change over time

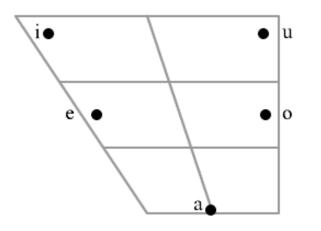
What is a **spectrogram**?

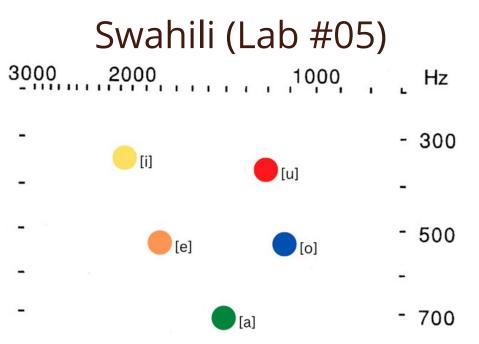
A **spectrum** shows *amplitude by frequency*


- A **spectrogram** *turns the spectrum sideways* and adds the time dimension
- So...
 - We can use **narrow-band spectrograms** to look at **glottal components** over time
 - We can use **wide-band spectrograms** to look at **formants** (among other things) over time


- The vowels [a i u] from <u>Hawai'ian</u>, from *V&C* Ch 3
 - Can you tell which is which? How?

- How do **vowel properties** relate to **formants**?
 - **F1** correlates...
 - **F2** correlates...





- How do vowel properties relate to formants?
 - **F1** correlates *inversely* with **height**
 - F2 correlates *inversely* with backness, as long as (non-low) back vowels are round

- How do vowel properties relate to formants?
 - **F1** correlates *inversely* with **height**
 - F2 correlates *inversely* with backness, as long as (non-low) back vowels are round
- Why?

Multiple-tube model

• How do we predict vowel formants in this model?

Multiple-tube model

- How do we predict vowel formants in this model?
 - What series of tubes models the vowel's articulation?
 - What are the resonance frequencies of those tubes?
 - Is there a Helmholtz resonance?

Perturbation theory

• How do we predict vowel formants in this model?

Perturbation theory

- How do we predict vowel formants in this model?
 - Where are there constrictions in the vocal tract?
 - Do these raise or lower each formant as compared to [ə]?

- Use the perturbation "rules of thumb"
 - If there is a narrowing in the vocal tract near a velocity/displacement <u>antinode</u> = pressure node, the formant frequency goes _____.
 - If there is a narrowing in the vocal tract near a pressure antinode (velocity/displacement <u>node</u>), formant frequency goes ____.
- Don't confuse the pressure wave and the velocity/displacement wave!
 (review: "Standing Sound Waves", D. Russell, Penn State)

- Use the perturbation "rules of thumb"
 - If there is a narrowing in the vocal tract near a velocity/displacement <u>antinode</u> = pressure node, the formant frequency goes DOWN.
 - If there is a narrowing in the vocal tract near a pressure antinode (velocity/displacement <u>node</u>), formant frequency goes UP.
- Don't confuse the pressure wave and the velocity/displacement wave!
 (review: "Standing Sound Waves", D. Russell, Penn State)

- How do traditional vowel properties relate to formants?
 - **F1** correlates *inversely* with **height**
 - F2 correlates *inversely* with backness, as long as (non-low) back vowels are round
 - Why is F2 low in [a] by perturbation theory?
 - Why is F2 low in [u] by perturbation theory?
 - → Different reasons!

4. Research questions and hypothesis testing

- Lab #06: What do we predict, and why?
- How can we present our results to answer this question?