Linguistic Phonetics

- The larynx and phonation
- VOT (voice onset time)

Background reading and preparation:

- V&C 13.1 "The larynx"
- V&C 13.2 "Voiced and voiceless sounds"
- V&C 13.3 "Voicing and aspiration"
- AAP 8.1.2, "Sound sources in stops & affricates"
- Optional resources about <u>the larynx</u>

0. Today's objectives

After today's class, you should be able to:

- Explain the role of the arytenoid and thyroid cartilages in adducting / abducting the vocal folds
- Understand the role of air pressure in vocal-fold vibration (the myoelastic/aerodynamic theory)
- Explain how the articulation of voiced, voiceless, and (voiceless) aspirated oral stops produces negative, zero, and positive voice onset time (VOT)
- Use IPA symbols to transcribe aspirated oral stops

0. Upcoming schedule

- W Oct 15: Discussion of Lab #6, #7, and (next) #8
 - Formulating research questions and hypotheses
 - Measuring and reporting acoustic data
 - Any other content check-ins and review
 - (Time permitting) Lab #8 work time: Hypotheses
- M Oct 20: Partner lab work session (Lab #8)
- If you will miss class: check in with partner group
 - Be clear on Lab #8 instructions
 - Make plans for dividing the work

1. The structure of the larynx

- Larynx: a structure composed mostly of cartilages and muscles that sits on top of the trachea
 - Posterior
 (rear) view;
 structure names
 FYI here

Image by Michael Mitchell, Tidewater Community College

1. The structure of the larynx

- Inside the larynx are the **vocal folds** (sometimes called "vocal cords"; they aren't really "cords")
 - Connected to the thyroid cartilage at the front and the arytenoid cartilages
 ("ac" in diagram) at the back
- Arytenoid cartilages can pivot, making vocal folds adduct (come together) or abduct (move apart)

image: Wesley Norman

- Know the structures and terms in bold on this slide
- For more info, see the LING 520 "Larynx and phonation" web page

True or false?

To increase the f_0 of the glottal source, a speaker uses the laryngeal muscles to pull the vocal folds open and push them closed at a faster rate

True or false?

To increase the f_0 of the glottal source, a speaker uses the laryngeal muscles to pull the vocal folds open and push them closed at a faster rate

FALSE: The vocal folds vibrate much more quickly than can be achieved by muscle-driven motion

- Myoelastic/aerodynamic theory of phonation:
 - muscle tension and
 - fluid dynamics in air cause vibration

What is this a picture of? How does it work?

image from Wikimedia Commons

A fireplace bellows: it blows air on the fire

image from Wikimedia Commons

- How do you get air in?
- How do you push air **out**?

A fireplace bellows: it blows air on the fire

image from Wikimedia Commons

- How do you get air **in**?
- How do you push air **out**? | **Decrease** volume

Increase volume

Remember this whenever we talk about air pressure!

- Increasing the volume of a container of air lowers the pressure inside
- Decreasing the volume of a container of air raises the pressure inside
- Air pressure always tries to equalize

As a result:

- Decreasing the volume makes air move ____
- Increasing the volume makes air move ____

- Increasing the volume of a container of air lowers the pressure inside
- Decreasing the volume of a container of air raises the pressure inside
- Air pressure always tries to equalize
 As a result:
 - Decreasing the volume makes air move out
 - Increasing the volume makes air move in

- The relationship between air pressure and moving air is important for phonation in several ways
 - Getting air to move out from the lungs
 - Getting air to push past the adducted (closed) vocal folds

 Schematic cross-sectional diagram of the <u>vocal folds</u> during phonation (from a web page by <u>John Coleman</u>, Oxford U.)

- Length of vertical lines indicates magnitude of air pressure
- Horizontal dashed lines indicate muscle tension

 How one cycle of vocal-fold vibration happens, according to the myoelastic/aerodynamic theory

- Vocal folds loosely adducted (1)
- Air pressure builds up below until the pressure difference overcomes the muscle tension (2–3)
- Vocal folds forced open; air passes through (4–5)
- Pressure equalizes; muscle tension + 'sucking' effect of moving air (Bernoulli effect) pulls v.f. back together (6–10)

- Some observations from linguistic typology:
 - If a language is missing one of the voiced oral stops [b d g], it is most likely to be missing [g]
 - WALS map: <u>Languages missing [g] or [p]</u>
 (blue and purple dots are missing [g])
 - In some languages, there is a tendency for the duration of voicing to be **longer** for oral stops further **forward** in the vocal tract ([b]>[d]>[g])
- The myoelastic/aerodynamic theory of phonation can help explain these facts — how?

- Ease of voicing in oral stops: [b]>[d]>[g]
- The myoelastic/aerodynamic theory of phonation can help explain these facts — how?
 - Why is supraglottal pressure (air pressure in the vocal tract above the larynx) a crucial factor in phonation?
 - Why is it more **difficult** to maintain voicing in [g] than in [b] or [d]?

** We will return to this discussion next class **

Goals of this discussion:

- What is VOT? How do we measure it in oral stops?
 - What is **aspiration**? How does it relate to VOT? What does it look like on a spectrogram?
 - What kinds of stops have (near) zero VOT?

Voiceless aspirated stops (as in English pα [phax])

Oral closure _____/
(lips for [p]) _____

Glottis _____/

Time (ms)0....*....

(* = onset of voicing)

Voiceless unaspirated stops (as in French pas [pa]),
 English spa [spaː]

Oral closure _____/
(lips for [p]) _____

Time (ms)0*......

(* = onset of voicing)

 What are the timepoints we are concerned with when measuring VOT in stops?

- Which class of oral stops has...
 - VOT of (near) **zero**?
 - Positive VOT?

- What are the timepoints we are concerned with when measuring VOT in stops?
 - Stop release and beginning of phonation
- Which class of oral stops has...
 - VOT of (near) **zero**?
 - Positive VOT?

- What are the timepoints we are concerned with when measuring VOT in stops?
 - Stop release and beginning of phonation
- Which class of oral stops has...
 - VOT of (near) **zero**? | Voiceless unaspirated
 - Positive VOT? | Voiceless aspirated
- If we extend the concept of VOT to voiced oral stops, and we measure with the same landmarks, what kind of VOT will the voiced stops have?

- What are the timepoints we are concerned with when measuring VOT in stops?
 - Stop release and beginning of phonation
- Which class of oral stops has...
 - VOT of (near) **zero**? | Voiceless unaspirated
 - Positive VOT? | Voiceless aspirated
- If we extend the concept of VOT to voiced oral stops, and we measure with the same landmarks, what kind of VOT will the voiced stops have?
 - Negative VOT (voicing begins before stop release)

Voiced stops (as in English about [əbaυt])

Oral closure _____/
(lips for [b]) ______/

Glottis /\/\/\/\/\/\

Time (ms) *.....0......

(* = onset of voicing)

Three categories of VOT

negative VOT	(near) zero VOT	positive VOT
"voicing lead"		"voicing lag"
voiced	voiceless	voiceless
	unaspirated	aspirated

- Not all languages use all categories contrastively
- Some languages use only one or two categories, even phonetically
 - Examples: English vs. Spanish | Hindi (*v&c* web site)

To think about...

- What do we have to think about when measuring VOT for consonants other than stops?
 - See <u>Salgado, Slavic, and Ye (2013)</u> on aspirated
 [s] in S'gaw Karen
 (This publication began as a LING 520 final project!)

4. For next time

- Prepare an answer for the discussion question on slide 17 about voicing and place of articulation
- Preview the Lab #08 instructions (available Moneyening)