

• Airstream mechanisms: Ejectives, implosives, clicks

Optional reading for more information:

- V&C Ch 13, sec 13.8-13.9 (ejectives, implosives)
- V&C Ch 14, sec 14.5 (clicks)
- AAP Ch 8, pp 175-6 (ejectives, implosives clicks)

0. Today's plan

- Final-project information
- Brief check-in on Lab #07
 - **Centroid** and **dispersion** for distinguishing among the voiceless fricatives of German: Individually? Together?
 - How do these relate to the **source/filter model**?
- Intro to airstream mechanisms with a focus on ejectives — prepare to discuss research article
 - **articulation**, esp. volume and pressure in moving air
 - acoustics, esp. characteristics that distinguish ejectives/ implosives/clicks from each other and from plosives (pulmonic egressive oral stops)

Review from last week (fireplace bellows!)

 What conditions are necessary to cause a gas to move from one container into another?

 Assuming a flexible container, what change to the container's volume will cause a gas to move? Review from last week (fireplace bellows!)

- What conditions are necessary to cause a gas to move from one container into another?
 - Gas moves from high pressure to low pressure
- Assuming a flexible container, what change to the container's volume will cause a gas to move?
 - Volume $up \rightarrow pressure down \rightarrow gas moves in$
 - Volume **down** \rightarrow pressure **up** \rightarrow gas moves **out**

1. Airstream mechanisms

- In order for there to be sound, there must be moving air (or other medium: water, helium, ...)
- In speech, something must set the air in motion
 → This is known as an airstream mechanism
- So far, all the speech sounds we have discussed have had air moving **outward**, initiated by the **lungs**
 - This is the **pulmonic egressive** airstream mechanism
- There are three other possibilities...

1. Airstream mechanisms

Terminology for airstream mechanisms

Air set in motion by	Adjectival form	Direction of airstream	Name for this class
lungs	pulmonic	egressive	plosives (if oral stop ¹)
glottis	glottalic	egressive	ejectives
glottis	glottalic	ingressive	implosives
velum	velaric	ingressive	clicks

¹Most non-oral-stop consonants, all vowels are also pulmonic egressive

2. Pulmonic airstream mechanisms

- Pulmonic egressive most common airstream mechanism
 - Most speech sounds are pulmonic egressive
 - This includes all sounds of (standard) English
- How to get air to move **out** using the **lungs**?
 - Compress their volume \rightarrow higher pressure \rightarrow air moves out

2. Pulmonic airstream mechanisms

- **Pulmonic ingressive** airstream mechanism?
 - Physically possible (try talking while breathing in!)
 - Sometimes used for expressions of surprise, affirmation, etc. in different cultures
 [examples from Wikipedia]
 - Extremely rare or nonexistent in speech sounds

- The starting point for producing a **glottalic** airstream mechanism
 - Close the glottis (as if producing a glottal stop [?])
 - Form another stop constriction in the oral tract
 - Air is now trapped between the glottis and the other constriction
 - You should be *unable to breathe through* your nose while holding the two closures why?

- Language examples:
 - <u>WALS map</u> (ejectives in red or purple)
 - Sound file examples from V&C: see especially
 <u>Quechua</u>
- Most ejectives are (oral) stops or affricates, but fricatives are also possible
- There is a systematic convention for **transcribing** ejectives in the IPA what is it? (see *V&C*)

- An ejective is glottalic egressive
 - What do we need to do with the glottis to cause air to move **out of** the mouth when the oral closure is released?

- An ejective is glottalic egressive
 - What do we need to do with the glottis to cause air to move **out of** the mouth when the oral closure is released?
 - Volume between glottal and oral closures must get *smaller* → pressure **up** → air **out**
 - Raise the larynx!
 - Then, release oral closure
 - Last, release glottal closure

- In an ejective, the glottis remains tightly closed until just after the oral closure is released
 - Can an ejective be **voiced**? Why or why not?

- In an ejective, the glottis remains tightly closed until just after the oral closure is released
 - Can an ejective be **voiced**? Why or why not?
 - **Impossible**: vocal folds can't vibrate while glottis is tightly closed

- What should an ejective stop look like on a waveform/spectrogram?
 - The **burst** is usually **more salient** than in a plosive why?
 - If the sequence of events is *oral release glottal release — (vowel),* what do we expect this to look like on the **waveform**?

- Language examples
 - <u>WALS map</u> (implosives in blue or purple)
 - Sound file examples from V&C: see especially
 <u>Sindhi</u>, <u>Owerri Igbo</u>
- Implosives are nearly always (oral) **stops**
- What characteristic do IPA symbols for **transcribing** implosives have in common? (see *V&C*)

- An implosive is glottalic ingressive
 - What do we need to do with the glottis to cause air to move **into** the mouth when the oral closure is released?

- An implosive is glottalic ingressive
 - What do we need to do with the glottis to cause air to move **into** the mouth when the oral closure is released?
 - Volume between glottal and oral closures must get *larger* → pressure **down** → air **in**
 - Lower the larynx!
 - Timing of release of oral and glottal closures probably less critical than in ejectives

- An implosive is almost always **voiced**
 - What happens to supraglottal air pressure if the glottis is vibrating while it is lowered?

- An implosive is almost always **voiced**
 - What happens to supraglottal air pressure if the glottis is vibrating while it is lowered?
- Consequences:
 - Air pressure may not be lower than zero (atmospheric pressure) in oral cavity when larynx is lowered
 - Air may not actually rush into mouth when oral closure is released

- What should an implosive look like on a waveform/spectogram?
 - Should the stop have a burst? If so, should it be weak or strong? Why?

- A difference between implosives and voiced plosives visible on the waveform
 - In an implosive, the amplitude of the voicing during closure generally *increases* (or at least does not decrease) leading up to the stop release
 - This indicates: it is **easier to maintain voicing** in an implosive, compared to a voiced plosive
 - Think about our discussion of voicing in plosives:
 Why might implosives be easier to voice?

- The starting point for producing a velaric airstream mechanism
 - Form a closure at the **velum** (just as for a velar stop)
 - Form another closure **forward** of the velum
 - Labial, dental, alveolar, postalveolar
- What effect does forming this <u>configuration</u> have on the ability to produce...
 - voicing?
 - nasality?

- The starting point for producing a velaric airstream mechanism
 - Form a closure at the **velum** (just as for a velar stop)
 - Form another closure **forward** of the velum
 - Labial, dental, alveolar, postalveolar
- What effect does forming this <u>configuration</u> have on the ability to produce...
 - voicing? | no effect! voiceless/voiced possible
 - nasality? | no effect! oral/nasal possible

- Clicks are possible at various places of articulation (see <u>IPA chart</u> for symbols)
 - bilabial click (like a flat-lipped 'kiss' sound)
 - dental click (like the sound that indicates disapproval)
 - (central) alveolar click
 - lateral alveolar click (like the noise made to get a horse to move)
 - palatoalveolar click

- To indicate whether a click is produced with nasality, or whether it is voiced or voiceless, it can be written together with a velar stop [k g ŋ]
 - By convention, the click sound is understood to be simultaneous with the preceding velar stop
- Language examples
 - <u>WALS map</u> (clicks in red)
 - Sound file examples from V&C: see especially
 <u>Nama</u>, <u>Zulu</u>, <u>Xhosa</u>

- A click is a velaric ingressive sound
 - What do we need to do for air to move **into** the mouth when the oral closure is released?

- A click is a velaric ingressive sound
 - What do we need to do for air to move **into** the mouth when the oral closure is released?
 - Volume between closures must get *larger* → pressure **down** → air **in**
 - Slide the tongue body down/back while maintaining the velar closure!
 - Then release forward closure, then velar
 - <u>X-ray of a click</u>, from V&C

- What might we predict about the acoustics of bursts in clicks? Why?
 - Note that the change in volume of the space between closures (before the forward closure is released) is proportionally large because the space itself is relatively small

- A **velaric egressive** sound is physically possible, but they are not known to occur as speech sounds
 - What would you have to do with a velaric airstream configuration to get the air to move out?