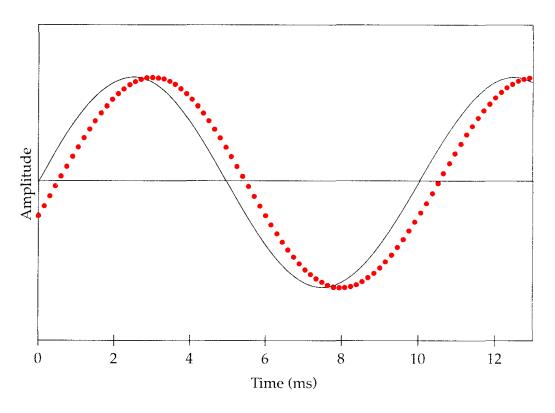
Linguistic Phonetics

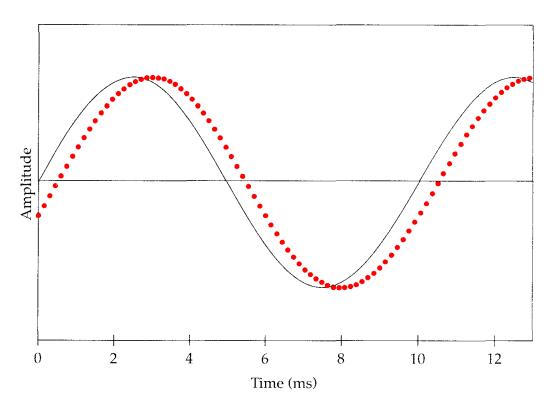
- Digital signal processing:
 Understanding digital sound files
- Recordings for phonetic analysis

Background:


- AAP Ch 3, sec 3.1-3.2 (digital signal processing)
- Praat handout #5

0. Today's objectives

After today's class, you should be able to:


- Explain the difference between analog and digital representations of sound-wave information
- Define sampling rate and quantization, and explain how they affect digital recording quality
- Take precautions that let you make good-quality recordings

 This graphic (based on AAP, Fig. 3.1) represents a continuous sine wave and a discrete sine wave

- Which is which?

 This graphic (based on AAP, Fig. 3.1) represents a continuous sine wave and a discrete sine wave

- Which is which?

continuous

discrete

- Continuous or discrete?
 - Air-pressure fluctuations over time: _____
 - Sound files stored on a computer: ______
 - Analog signals: _____
 - Digital signals: _____

- Continuous or discrete?
 - Air-pressure fluctuations over time: continuous
 - Sound files stored on a computer: discrete
 - Analog signals: continuous
 - Digital signals: discrete

Compare analog and digital clocks

- Compare analog and digital clocks
 - Analog: The hand sweeps around continuously and smoothly, and it points to every spot on the circle of the clock face
 - **Digital**: It divides time into intervals, and jumps from one to the next; no info between intervals
 - An alarm clock shows you 5:07 and then 5:08, but no information between those two time points
 - A digital stopwatch shows you 5:07:35.02 and 5:07:35.03, but no information between those two time points (though the interval is much smaller!)

2. Understanding digital sound files

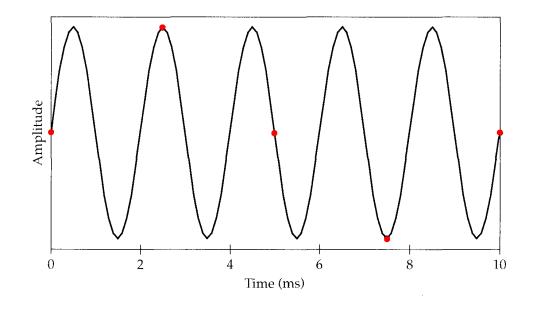
- A sound wave (disturbance in a medium), measured in terms of air-pressure fluctuations, is continuous
 - <u>Time</u>: There is some numerical air-pressure value at any given instant
 - <u>Amplitude</u>: The air-pressure value can be any magnitude whatsoever

2. Understanding digital sound files

- A sound wave (disturbance in a medium), measured in terms of air-pressure fluctuations, is continuous
- Recording this sound wave and storing it on a computer converts it into a digital representation
 - <u>Time</u>: Pressure measured at **discrete intervals**
 - Imagine a tiny observer, measuring the air pressure hundreds or thousands of times every second
 - There are still timepoints where no measurement is taken = no air-pressure value is represented
 - <u>Amplitude</u>: Pressure measured in **discrete units**
 - The units can be very small—but not infinitely small

Sampling rate

- What does this refer to, for a digital sound file?
- For waveform: Is this about amplitude, or time?

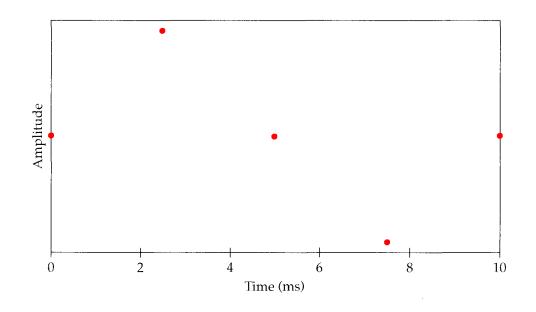

Sampling rate

- What does this refer to, for a digital sound file?
- For waveform: Is this about amplitude, or time?
 - AAP, p 51: the "number of times per second that we measure the continuous wave in producing the discrete representation of the signal"

How can we find it in Praat?

- What is aliasing?
- What is the Nyquist frequency, and how does it help us avoid aliasing in a digital recording?

- Aliasing | AAP, p 54: "[the] misrepresentation of a continuous signal in a discrete waveform"
- → Suppose we sample this sine wave every
 2.5ms, as shown by the red dots

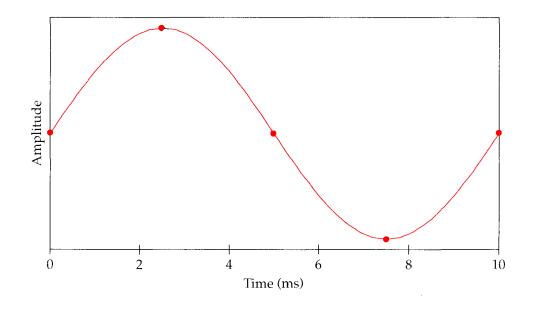


(adapted from AAP Fig 3.4, p 54)

- sampling rate = 1/2.5ms = 400Hz
- (black) sine wave f = 5 cycles/.01s = 500Hz

Aliasing

→ The computer's
 representation of this
 wave, being digital,
 looks like this

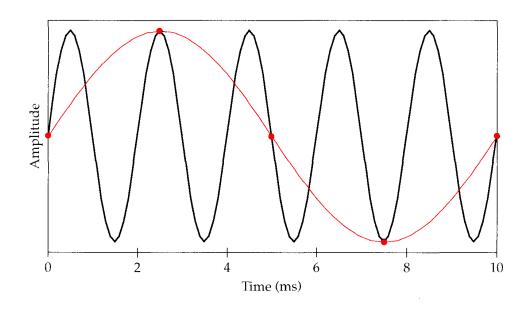


(adapted from AAP Fig 3.4, p 54)

• sampling rate = 1/2.5ms = 400Hz

Aliasing

 → This information will be interpreted as corresponding to the red sine wave now shown

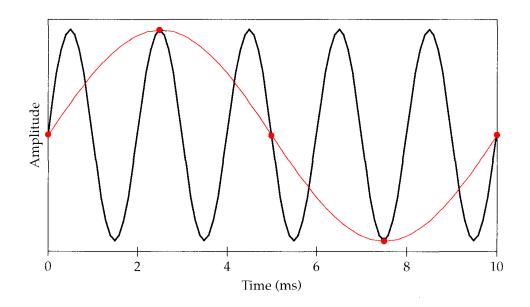


(adapted from AAP Fig 3.4, p 54)

- sampling rate = 1/2.5ms = 400Hz
- red sine wave f = 1 cycle/.01s = 100Hz

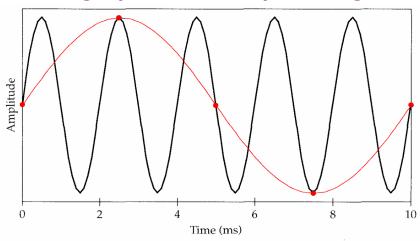
Aliasing

→ Analysis is therefore
 missing the (real) black
 component (500Hz) and
 including the (spurious)
 red component (100Hz)



(adapted from AAP Fig 3.4, p 54)

- sampling rate = 1/2.5ms = 400Hz
- black sine wave f = 5 cycles/.01s = 500Hz
- red sine wave f = 1 cycle/.01s = 100Hz


Aliasing

→ Analysis is therefore
 missing the (real) black
 component (500Hz) and
 including the (spurious)
 red component (100Hz)

(adapted from AAP Fig 3.4, p 54)

- What is the Nyquist frequency, and how does it help us avoid aliasing in a digital recording?
 - The Nyquist frequency is half the sampling rate
 - Aliasing occurs when there are components at frequencies *higher* than the Nyquist frequency
 - sampling rate = 400Hz
 - Nyquist frequency = 200Hz
 - black sine wave f = 500Hz
 - \rightarrow 500Hz > 200Hz, so: aliasing!

(adapted from AAP Fig 3.4, p 54)

- We need to...
 - **Filter out** frequencies above the Nyquist frequency to avoid aliasing

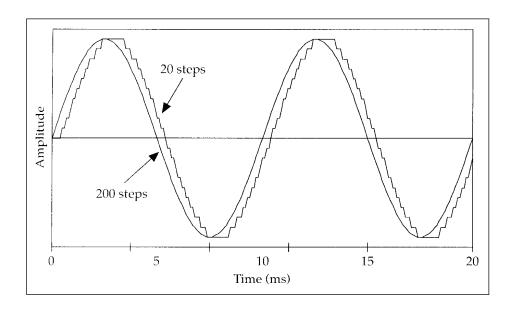
- Make sure our **sampling rate** is **high enough** to *include* components of interest

- We need to...
 - Filter out frequencies above the Nyquist frequency to avoid aliasing
 - → A microphone has a "frequency response band" (often 20Hz-20,000Hz) — it filters out components outside this range
 - Make sure our sampling rate is high enough to include components of interest
 - → This is a setting we can control when recording in Praat: 44.1 kHz is recommended — why? (see above point about microphones!)

Reminder

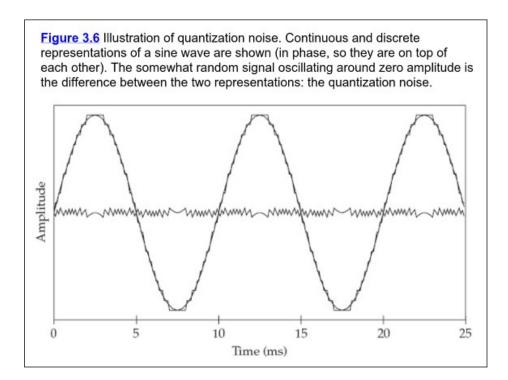
- Recording a sound wave and storing it on a computer converts it to a digital representation
 - <u>Time</u>: Pressure measured at **discrete intervals**
 - Imagine a tiny observer, measuring the air pressure hundreds or thousands of times every second
 - There are still timepoints where *no* measurement is taken = *no* air-pressure value is represented
 - <u>Amplitude</u>: Pressure measured in **discrete units**
 - The units can be very small—but not infinitely small

Quantization


- What does this refer to, for a digital sound file?
- For waveform: Is this about amplitude, or time?

Quantization

- What does this refer to, for a digital sound file?
- For waveform: Is this about amplitude, or time?
 - See discussion in *AAP*, p 55, summarized here: Quantization refers to how **finely grained** the **amplitude** measurements will be when the sound wave is sampled
 - Essentially: How many decimal places will the amplitude value be rounded off to?


Quantization

Which gives a closer approximation to the continuous sine wave, "20 steps" or "200 steps"?

Quantization

The difference between the continuous wave and its digital representation is "quantization noise", and it adds components to the spectral analysis!

 What are the trade-offs in determining a setting for quantization?

- What are the trade-offs in determining a setting for quantization?
 - More accurate amplitude values require more computer memory for storage
 - Fortunately, this is much less of an issue than it used to be!
 - → Computer sound cards these days use at least
 16-bit quantization, which is very good
 (AAP, p 57: signal-to-noise ratio for 16-bit quantization is 65,536:1!)
 - We don't need to set a value for quantization in Praat

5. Audio file formats

 In acoustic analysis, we want to use digital sound files that are as close as possible to the original analog sound waves they represent

Ideally, we would use...

- A **high sampling rate** (44.1kHz is CD-quality)
- Higher-bit quantization (16-bit is CD-quality)
- We also want to avoid using sound file formats that compress the data and lose information ("lossy compression")

5. Audio file formats

- Good file formats to use for phonetic analysis are:
 - .WAV files
 - .AIFF, .AIFC files (this is a Mac format, but they open in Praat on Windows machines too)
 - Many of the other formats Praat offers in the "Save as..." menu (in the Objects window) would be fine
- Note that this list does not include MP3

5. Audio file formats

- MP3s use lossy compression information about components is lost when this file format is created
 - Therefore, it is preferable not to use MP3 files for phonetic analysis
 - If using MP3s is unavoidable, try to use a **compression setting of 192 kb/s**, which is the least compression possible
- For more information, see "What does MP3 do to your recordings?" by Sydney Wood

6. Making recordings in Praat

See <u>Praat handout #5</u> and AAP, p 58

Some things to watch out for

- Placement of microphone why?
- Sound input level why? What happens if it is too low? Too high?