Th Mar 7

Today's topics:

- Richness of the Base; inputs, URs
- Allophonic alternations in OT

Background preparation:

• McCarthy (2008), sec 2.8

0. Today's key points

- Predictable and unpredictable information in OT
- Richness of the Base
 - Implications for modeling predictable information
 - Implications for inputs in the model
- OT exercises (from last time)

- Review: In generative grammar, there is a key conceptual distinction between predictable and unpredictable information
 - Unpredictable information *must* be
 - Predictable information (if productive) is

- Review: In generative grammar, there is a key conceptual distinction between predictable and unpredictable information
 - Unpredictable information *must* be learned, memorized, stored in the lexicon
 - Predictable information (if productive) is
 enforced by the mental grammar
- How does this look from the perspective of a constraint-based phonological model (OT)?

From a constraint-based perspective

- **Predictable** info: enforced by the grammar
 - This means that predictable information is enforced by the **constraints** as they are **ranked** in a particular language
- **Unpredictable** info: stored in mental lexicon
 - But now this means that unpredictable information found in the UR/input form must survive in the winning output form

- Is it predictable whether or not a syllable has a coda?
 - Some examples to explore this question

• Language #1: Syllables never have codas, codas avoided by deletion | What is the ranking?

/tip/	NoCoda	Dep	Max
→a. ti			*
b. tip	*		
c. ti.pV		*	

(We know /tip/ because of an **alternation**: /tip+o/ \rightarrow [tipo])

• Language #1: Syllables never have codas, codas avoided by deletion | What is the ranking?

/tip/	NoCoda	Dep	Max
→a. ti			*
b. tip	*w		L
c. ti.pV		*w	L

(We know /tip/ because of an **alternation**: /tip+o/ \rightarrow [tipo])

 Language #1: Syllables never have codas, codas avoided by deletion | { NoCoda, DEP } » Max

/tip/	NoCoda	Dep	Max
→a. ti			*
b. tip	*w		L
c. ti.pV		* _W	L

(We know /tip/ because of an **alternation**: /tip+o/ \rightarrow [tipo])

• Language #1: Syllables never have codas, codas avoided by deletion | What is the ranking?

/ba/	NoCoda	Dep	Max
→a. ba			
b. bat	*	*	

• Language #1: Syllables never have codas, codas avoided by deletion | What is the ranking?

/ba/	NoCoda	Dep	Max
→a. ba			
b. bat	*W	*w	

 Language #1: Syllables never have codas, codas avoided by deletion | (no rk arg here)

/ba/	NoCoda	Dep	Max
→a. ba			
b. bat	* _W	* _W	

Ranking from above is *consistent* with this outcome: { NoCoda, DEP } » Max

- Language #1: Syllables never have codas / deletion
 - Is it **predictable** or **unpredictable** whether a word <u>chosen at random</u> will have a coda or not?

- What is the relationship between *markedness* and *faithfulness* constraints here?

- Language #1: Syllables never have codas / deletion
 - Is it **predictable** or **unpredictable** whether a word <u>chosen at random</u> will have a coda or not?
 - Predictable! Whether UR ends in a consonant or not, output will have no coda
 /tip/ → [ti] and /ba/ → [ba]
 - Relationship between *markedness*, *faithfulness*?
 - The markedness constraint enforcing the predictable pattern (NoCoda) dominates a faithfulness constraint that would preserve the contrast

• Language #2: Codas allowed | What is the ranking?

/kip/	Dep	Max	NoCoda
→a. kip			*
b. ki		*w	L
c. ki.pV	* _W		L

/ma/	Dep	Max	NoCoda
→a. ma			
b. mat	\star_{W}		*W

Language #2: Codas allowed | { DEP, MAX } » NoCoda

/kip/	Dep	Max	NoCoda
→a. kip			*
b. ki		*w	L
c. ki.pV	*w		L

/ma/	Dep	Max	NoCoda
→a. ma			
b. mat	*W		*W

- Language #2: Codas are allowed
 - Is it **predictable** or **unpredictable** whether a word <u>chosen at random</u> will have a coda or not?

- What is the relationship between *markedness* and *faithfulness* constraints here?

- Language #2: Codas are allowed
 - Is it **predictable** or **unpredictable** whether a word <u>chosen at random</u> will have a coda or not?
 - Unpredictable! If UR ends in a consonant, the output will have a coda; otherwise not
 /tip/ → [tip] and /ba/ → [ba]
 - What is the relationship between *markedness* and *faithfulness* constraints here?
 - <u>All</u> **faithfulness** constraints that preserve the contrast dominate the markedness constraint enforcing the pattern

- Summary: Whether some phonological property is predictable or unpredictable depends on the markedness vs. faithfulness rankings
 - For unpredictable information to survive in the output form, *all* the relevant faithfulness constraints must dominate the markedness constraint that would remove that unpredictable information

- Summary: Whether some phonological property is predictable or unpredictable depends on the markedness vs. faithfulness rankings
 - If the **markedness** constraint dominates even *one* faithfulness constraint, the winner will be unfaithful and the markedness constraint will always be satisfied
 - Every surface form will *avoid* the same phonological pattern (so the behavior is predictable)

- Note that for input /ba/, candidate (a) [ba] has no violations of these constraints
 - This means that /ba/ \rightarrow [ba] is predicted to be the winner in *all languages*
 - How does this match what we know about cross-linguistic syllable typology?
 - /ba/ → [ba], *[bat] is an example of harmonic
 bounding
 - /ba/ → [ba] has a proper subset of the violations of /ba/ → [bat]

- Now consider Language #3 see also <u>A CVCV language</u>
 - Similar to Language #1 in that no surface forms have codas (predictable)
 - But unlike Language #1, *no* alternations
 - Every morpheme always surfaces with no evidence for a final C: /pa/ always surfaces as [pa], /mifu/ always surfaces as [mi.fu], etc.
 - This means that every morpheme's UR has the same segmental structure as its SR
 - What is the constraint ranking for this language?

- Language #3: No codas, no alternations
 - What ranking can we explicitly motivate by analyzing attested surface forms?

/mifu/	NoCoda	Dep	Max
→a. mi.fu			
b. mif	*		*
c. mi.fut	*	*	

- Language #3: No codas, no alternations
 - What ranking can we explicitly motivate by analyzing attested surface forms?

/mifu/	NoCoda	Dep	Max
→a. mi.fu			
b. mif	* _W		*W
c. mi.fut	* _W	*w	

- Language #3: No codas, no alternations
 - What ranking can we explicitly motivate by analyzing attested surface forms?

- Nothing!

We can't motivate any rankings here, because there are **no conflicts** among these constraints

• However!

If we are serious about the idea that **predictable** patterns are driven by **markedness** constraints, we <u>must conclude</u> that NoCodA » *Faithfulness*

- NoCoda must dominate either Max or DEP, although we don't know which one
- Why don't we know? Because real words in this language never show either epenthesis or deletion

- If we have NoCoda » *Faithfulness*, we have a grammar with the **power** to get rid of codas
 - Even <u>if we give the grammar an input with a final</u> <u>consonant</u>, the output will still have no coda

- But...how can we give the grammar an input with a final consonant, if there is no evidence that any morpheme ends in a consonant?
 - Here is where *input and UR are not the same*
 - We can give the grammar a **hypothetical** input (not a real word) and consider *what it would do*

• We can give the grammar a **hypothetical** input (not a real word) and consider *what it would do*

/CVC/	NoCoda	Dep	Max
?→ a. CV_			*
?→ b. $CV.CV$		*	
c. CVC	*w	L (?)	L (?)

- If DEP » MAX (MAX is lowest), candidate (a) will win If MAX » DEP (DEP is lowest), candidate (b) will win

- We can give the grammar a hypothetical input (not a real word) and consider what it would do
 - If DEP » MAX (MAX is lowest), candidate (a) will win If MAX » DEP (DEP is lowest), candidate (b) will win
 - We don't know which, but one of them will
 This is because NoCopA must be highest, to enforce the predictable information that codas are not allowed

- What this means: A grammar with NoCoda » *Faithfulness* will **productively** get rid of codas, even if no existing morphemes show this alternation
- This example illustrates a key OT principle:
 - Richness of the Base (ROTB): There are no language-particular restrictions on input forms (Prince & Smolensky 1993)

- **Richness of the Base** (ROTB): There are no language-particular restrictions on input forms
 - Translation: If something is a possible input in one language (such as /CVC/), it is a **possible** input in all languages
 - This means we do not need devices such as "morpheme structure constraints" that allow the phonological grammar to specify what is or is not a *possible UR* in each language

- In rule-based phonology, how would we model Language #3 (no codas; no alternations)?
 - We would **not** model this with a deletion (or insertion) **rule**, because there is no deletion (insertion) process in this language
 - Morphemes simply never have consonants in a position where they would *become* codas
 - Instead, we would propose a morpheme structure constraint:
 "URs can never have CC or C#"

 In OT, Language #3 is modeled the same way as Language #1: NoCodA » Faithfulness

Language #1	Language #3
/tip/ [ti_], /tip+o/ [ti. p o]	/pa/ [pa], /mifu/ [mi.fu]
Consonant deletion can be	There are no visible C~Ø or
observed	Ø~V alternations
Analysis:	Analysis:
NoCoda » Max (and Dep » Max)	NoCoda » (Max or Dep)

 Predictable = enforced by the constraint ranking, whether we see an active "rule" (alternation) or not

• In general:

If some structure is absent in a language, this tells us markedness (M) » (some!) faithfulness (F)

- codas in Hawai'ian
- front rounded vowels in English

- Having an M » F ranking for some phonological structure makes a prediction:
 - It should be part of the native speaker's **knowledge** that this structure is illegal
 - Evidence for this?
 Consider loanword phonology or invented words; what does a native speaker do?
 - Hawai'ian: English *wine* [wain] \rightarrow [wai.na]
 - English: French *menu* $[...ny] \rightarrow [...nju]$

- However, languages also have **accidental gaps**
 - Some structure just happens to be missing in the morphemes of the lexicon, but the grammar doesn't actually prohibit it
 - The absence of this structure is **not productive**
 - Example: [bw] onset clusters are extremely rare in English, but in experiments, native speakers do not treat them as ungrammatical

- We can model this difference in OT as follows:
 - True **productive gaps** have **M » F**
 - Given a "new" word or a loanword, native speakers actively avoid the structure
 - Accidental gaps do not have M » F
 - Given a "new" word or a loanword, native speakers produce the structure faithfully
 - *Warning:* Sometimes speakers/languages use special faithfulness for loanwords this could mean that the gap *is* productive, outside loanwords

4. ROTB and implications for "inputs"

- What is an **input** in an OT grammar?
 - Sometimes, an input is an **actual UR** of an attested morpheme or word
 - But sometimes, an input is a hypothetical input that we use to make the grammar is doing its job: the grammar must actively enforce productive predictable patterns

4. ROTB and implications for "inputs"

- McCarthy (2008), sec 2.8 | What inputs do we need to consider for an analysis?
 - Obvious: **URs that surface unfaithfully** show that the grammar is enforcing something
 - Perhaps less obvious: URs that surface
 faithfully are informative when they violate
 markedness constraints

4. ROTB and implications for "inputs"

- McCarthy (2008), sec 2.8 | What inputs do we need to consider for an analysis?
 - Perhaps even less obvious: Hypothetical inputs, that don't correspond to actual URs of the language, are sometimes needed in order to test the grammar's ability to rule out ungrammatical forms

5. Exercises — Practice with OT concepts

 Exercises in McCarthy (2008), Ch 2 (see slides from last class)