Discussion summary: Interpreting experiment results

- (1) Many psycholinguistics articles include the following sections:
 - (a) A theoretical overview
 - Gives a summary of the linguistic or psychological models that will be compared or tested
 - May summarize or critique previous psycholinguistics papers
 - (b) A section outlining the *experiment design and methodology*
 - Either here, or in the theoretical overview, there should be a discussion of exactly what predictions are made by the theories or frameworks under consideration
 - (c) One or more sections *reporting the results* and *discussing their implications*
 - Today's discussion focuses on this part of the paper
 - (d) A general discussion
 - This section will likely come back to the models or proposals from the theoretical overview and assess how they perform in light of the new experimental results
 - This section may also discuss problems with the experiments, open questions, and directions for future research
- (2) Experiment results: Comparing numerical values
 - (a) Most experiments are designed so that you are comparing different conditions to see if their outcomes are different
 - (b) In practice, this often means that you are collecting numerical data and you want to know if the numerical values obtained for the different categories are different
 - Example: Average daily time spent on Facebook for different age brackets
 - Example: Average reaction time (RT) in a lexical-decision task for high-frequency vs. low-frequency words
 - (c) This is not as straightforward as it sounds!
- (3) Suppose you wanted to see if a coin was fair or not by flipping it 100 times.
 - (a) If you got 50 H and 50 T, would you conclude that the coin was fair?
 - (b) What about 10 H and 90 T?
 - (c) What about 48 H and 52 T?
 - (d) What about 40 H and 60 T?
- (4) There are statistical tests that have been developed in order to determine how likely these various outcomes are. (For coin flipping, we can use a binomial distribution; other tests are more likely in psycholinguistics papers, but this is a simple example to look at.)

For 100 coin tosses, if the coin is fair (probability of H is 0.5):

	<u>number of H</u>	probability of at most this many heads oc	curring
(a)	50	0.54 (54% chance)	coin is fair
(b)	10	0.00000000000000137	coin is not fair
(c)	48	0.38 (38% chance)	???
(d)	40	0.03 (3% chance)	???

- (5) As you can see from the last two coin-toss examples, we need a way to decide what probability range is acceptable
 - If there is a 38% chance of 48 H when the coin is fair, should we conclude that the coin is fair or not fair when we get 48 H?
 - If there is a 3% chance of 40 H when the coin is fair, should we conclude that the coin is fair or not fair when we get 40 H?
- (6) This is what the *p* value is for when a result is reported: it tells you the probability that the result you got would have arisen by chance | remember: small *p* value is good!
 - (a) p < 0.01 (99% confidence that result is not due to chance) is generally considered highly significant
 - (b) p < 0.05 (95% confidence that result is not due to chance) is generally considered significant
 - (c) $p \ge 0.05$ is generally taken to show that the result is not significant
 - Running more trials might let you get to significance if you are close!
- (7) Something else we see in the Alegre & Gordon paper is an examination of significance by items and by subjects
 - For a strong result, we want to see significance for both
 - Significance for only one is indicative of a weaker result
 - Warning: This is a slightly old-fashioned way of evaluating results; newer statistical models don't require this type of comparison