Practice with basic OT formalism

These exercises are excerpted from McCarthy (1999). Copyright information is given at the end of the handout.

I. WI	hich of the foll	lowing tableaux,	if any	y, provides	a valid	argument	that B >>	C?
(1)		/in/		D			C	
		/in/	41	* B			C	
	a. b.		out1 out2	*			*	
(2)	0.		outz	I				J
(-)		/in/		В			С	
	a.	©	out1					
	b.		out2	*			*	
(3)						1		1
		/in/		В			С	
	a.	©	out1				*	
	b.		out2	*			*	
(4)	·)							I
		/in/					C	
	a.	a. s out1		*****	****	***	****	
	b.		out2	*****	****	**	****	
(5)								
		/in/					С	
	a.						_	
	b.		out2				*	
(6)	/in/			<u> </u>		D	C	
				A		В	*	
	a. b.	out1		*		*	· ·	

(7)

	/in/	A	В	С
a.	r out1	*		*
b.	out2	*	*	

(8)

	/in/	В	С	A
a.	© out1		*	
b.	out2	*		*

(9) How would you add shading to the tableaux above?

II. Strategies in OT phonology

(10) You're halfway through working on a problem. You've come up with the following tableau:

/in/		A	В
a.	r out1		*
b.	out2		*

What does your analysis need?

(11) A particular input *in* has exactly three candidates associated with it: *out1*, *out2*, *out3*. UG contains exactly three constraints: *A*, *B*, *C*. Suppose after analyzing other examples, you come up with the following tableau in language L1:

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
/in/		A	В	С	
a.	out1			*	
b.	out2	*	*		
c.	out3		*	*	

So L1 has the mapping $/in/ \rightarrow out1$.

Do you predict that there will be a language L2 with the mapping /in/ → out2?

Do you predict that there will be a language L3 with the mapping /in/ → out3?

If either of your predictions turned out to be false, how would you improve the theory?

From *Introductory OT on CD-ROM* (version 1.0). Copyright © 1999 by John McCarthy.

Permission is granted to reproduce these materials under the following conditions:

- (i) They may be copied freely for in-class use, provided that the original source is cited.
- (ii) Significant alterations should be noted, to supply a revision history.
- (iii) This compilation may not be redistributed without the permission of John McCarthy, nor may it or any of its contents be distributed in connection with any commercial enterprise.