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1 Introduction

(1) ‘Research program: | Comparative study of inductive learning. What has linguistic learning got to

do with human inductive learning in other domains?

(2) In particular: What has phonotactic learning got

to do with inductive learning of non-linguistic

concepts? Analogous inductive problems can arise across domains; are they solved in analogous

ways?
a. Phonology b. Morphology c. Non-linguistic concept
Consonant Number Adaptive immune system
Vowel  short long Case sing. pl. BackboneAbsent Present
short *lam lamm Acc. mur Present (none) Vertebrates
long *laqmm ~_Nom. mur-s| mur Absent | Invertebrates| (none)
Swedish: FEither the vowel Old French: /-s/ is attached Non-linguistic concept: An animal species

or the consonant of a closed
stressed syllable is long, but
not both (Lofstedt, 1992).

nominative or plural
not both (Luquiens,
§289).

to an o-stem noun if it is

has a backbone if and only if it has an
adaptive immune system (Litman et al.,
2010).

but
1909,

Y

(3) ‘Today’s focus:‘ Gradual weight update vs. serial hypothesis testing. Studies of non-linguistic
(mainly visual) concept learning have led psychologists to hypothesize two distinct learning processes
that have different properties and that are facilitated by different experimental conditions (Ashby
et al. 1998; Love 2002; Maddox and Ashby 2004; Smith et al. 2012; also with language-like stimuli,

Endress and Bonatti 2007; Endress and Mehler 2009;

Weinert 2009).

Ezplicit system (= reasoning)

Implicit system (=~ intuition)

Effortful Effortless
Conscious Unconscious
Abrupt Gradual

Demands attention and working memory

Does not need attention or working memory

Learns Type IFF/XOR (“Type II") patterns faster
than family-resemblance (“Type IV”) patterns

Learns Type IV patterns faster than Type II pat-
terns

Use is facilitated by supervised training, instruc-
tions to seek a rule, verbalizable features

Use is facilitated by unsupervised training, instruc-
tions that don’t mention rules, non-verbalizable
features

Can be modeled as serial testing of featurally-
simple hypotheses (“serial hypothesis testing”)

Can be modeled as weight update on array of prop-
erty detectors (“gradual weight update”)

(4) The proposed signatures of both learning modes can be found in phonological experiments (More-

ton and Pertsova, 2016).
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(5) ‘Idea for today’s talk: ‘ What unites the two kinds of learning is that both depend on finding formulas
(categorical, symbolic objects) by trial and error.

This talk describes an evolutionary algorithm for simultaneously inducing, weighting, and applying
Harmonic Grammar constraints, and shows how it can approximate both gradual weight update and
serial hypothesis-testing.

(6) Talk map:
§2 Brief précis of the Evolutionary Winnow-MaxEnt Subtree learner

§3 How it approximates gradual weight update, illustrated using an unsupervised phonological
learning experiment

§4 How it approximates serial hypothesis-testing, illustrated using a supervised visual learning
experiment

§5 Discussion

2 The Evolutionary Winnow-MaxEnt-Subtree Learner

(7) Précis of the Evolutionary Winnow-MaxEnt Subtree learner (Moreton 2010a,b,c, 2019, 2020; URL
for code and replication kit in Moreton 2020):

a. Candidates are trees. Markedness constraints are subtrees. (No faithfulness, yet.)

b. Constraint weights are population sizes.

c. Weight update is reproduction, inducing a nondeterministic variant of Winnow-2 (Littlestone,
1988; Moreton, 2019)

d. Constraint induction is evolution (variation and differential reproductive success)

(8) Why evolution?
a. Is an established technology for efficiently searching large, inconveniently-shaped hypothesis
spaces (Béck, 1996; Eiben and Smith, 2003; De Jong, 2006)

b. Hasn’t been tried in phonology yet, though it has been applied successfully to related problems
such as evolving receptive fields for inputs to the single-layer perceptron (Nakano et al., 1995)
and evolving tree structures (Cramer, 1985; Koza, 1989).

c. Allows constraints to be induced and weighted simultaneously, and on-line rather than in batch
mode; hence promising as account of what humans do

d. Connects phonological learning with a leading theory of human creativity in other domains
(Campbell, 1960; Simonton, 1999, 2004; Kronfeldner, 2010; Dietrich and Haider, 2015).

e. Connects gradual-reweighting models with serial hypothesis-testing models. (This talk)

2.1 Constraints and candidates

(9) Constraints and candidates are consubstantial (Golston 1996; Burzio 1999; see also Futrell et al.
2017):

a. Candidates are trees using standard Feature-Geometric tree structure (Goldsmith, 1976; Mc-
Carthy, 1981; Sagey, 1990; Clements and Hume, 1995). This implementation uses a slightly
simplified version of the one in Gussenhoven and Jacobs (2005, Ch. 5).

b. Constraints are subtrees: A constraint is a (possibly incomplete) representation which describes
a locus of violation or of satisfaction, plus an associated number of marks.
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(10) This example illustrates ONSET, a la Smith (2006), as applied to example candidates. (The
marks the head of a prosodic category.)

ONSET Matches once in it not in bit twice in th-uh
-1
|
- PrWd - L PrWd R L PrWd R L PrWd R
| l l
L Syllable - L Syllable R| L Syllable R|
l L Syllable R| L Syllable R
Root] [Root] [Root] ‘ [R.oolt]
[Place] [Place] | [Root] [Root] [Root] [Root] [Place]
[Dor] [Cor] [Place] [Place] [Place] Place] [Dor]
[+hi] [+ant]| [Lab] [Dor] [Cor] [Dor;l [+hi]
[-bk] [-dist] [-nas] [+hi] [+ant] o [+bk]
[-1o] [-nas] [+cons] [-bk] [-dist] o [-1o]
[-nas] [+cons] | [-apprx] [-10] [-nas] Lol [Lab]
[-cons] [~apprx]l [-son] [-nas] [+cons] nes] [+rnd]
[+apprx] [-son] [-lat] [-cons] [-apprx] [-cons] _
_ _ _ [+apprx] [-nas]
[+son] [-lat] [-cont] [+apprx]| [~son] [-cons]
[-1lat] [-cont] | [Lar] [+son] [-1lat] [+son] [+ ]
[Lar] - _ [-1lat] apprx
[+cont] [-spgll | [-1at] [-cont] [+son]
[Lar] [+spgl]l| [+voil] [+cont] [Lar] [+cont] [-lat]
[-spgl] [-voil [Lar] [+spgl] [Il;f;])gl] [+cont]
[+voil [-spgl] [-voi] [+voi] [Lar]
[+voi] [-spgl]
[+voi]
(11) This scheme is flexible enough to express a wide range of constraints:
*CPLXONS NoCobpa *NC
-1 -1 -1
| | |
- PrWd - - PrWd - - PrWd -
| |
- Syllable - - Syllable - /\
- Syllable R L Syllable -
[Root] [Root] [Roo‘t] [Roo‘t]
[Root] [Root] [Root] [+nas] [Lar]
[-voi]
Coronal palatalization CoDA-COND|voice] Intersonorant voicing PRWD> oo
-1 -1 -1 -1
| | | |
- PrWd - - PrWd - - PrWd - L PrWd R
| | |
- Syllable - - Syllable R /\ - Syllable -
| - Syllable R L Syllable -
[Root] [Root] [Root] |
[Placel] [Placel Ez;;ﬂ (Root] [Root] [Root]
[Cor] [Dor] [+v0i] [-cons] [Lar] [-cons]
[+ant]  [+hi] vol [+son] [-voil  [+son]



(12) Adding Greek-letter variables (not discussed in this talk; see Moreton 2010c) allows the schema

to express assimilation and dissimilation:

* AGREE-|high|

Nasal Place Assimilation

Syllable alliteration

-1 -1
| |
- PrWd - - PrWd - - PrWd -
- Syllable - - Syllable - - Syllable R L Syllable - L Syllable - L Syllable -
| | | | |
[Root] [Root] [Root] [Root] [—a Root] [ Root]
[Place] [Place] [ Place] [ Place]
[Dor] [Dor] [+nas] [-cont]
[+ahi] [-ahi]

(13) Properties of the Subtree Schema:
a. Imposes no extra restrictions on markedness constraints beyond those inherited from the Autosegmental /F
Geometric representational system.

b. Supports both adjacent and non-adjacent dependencies (e.g., Nasal Place Assimilation and
AGREE-|high] in (12))

c. Supports lexical exceptions natively. (Continuity between representations and constraints means
continuity between grammar and lexicon.)

d. Lends itself to recursive recombination and mutation (see below)

2.2 Micro- and macro-constraints

(14) Weights are population sizes: In a Harmonic Grammar framework (Legendre et al., 1990), we
can, without changing the harmony of any candidate, replace any constraint of weight w with w/¢
“micro-constraints”, i.e., clones of that constraint, each with weight (:

Macro-constraints:
Weights:

*CPONS
4

Max
3

Micro-constraints:
Weights:

*CPONS |
0.01

" 398 more

MAX |

| MAX

0.01 | 298 more ; 0.01

Jbfib-dzu/

|
"

|
"

|
"

[bfib.d3u]

H=—4

—[[ib.d3u]

* I

I *

H=-3

(15) Macro-constraints are equivalence classes: The algorithm itself sees only micro-constraints. For
analytic convenience, we can define two micro-constraints as belonging to the same macro-constraint if
they assign the same scores to all candidates (i.e., if they are notational variants of each other).



2.3 Evolving constraints

(16) Weight update is reproduction, inducing a nondeterministic variant of the Winnow-2 algorithm
(Littlestone, 1988; Moreton, 2019).

(17) Constraint induction is evolution, i.e., reproduction with variation and selection, i.e., trial and
error.

(18) A map of the algorithm:

Candidate set Micro- )
{W L} constraint
’ population

Error
(L chosen)
Y
Fitness:

di = CZ(W)—CZ(L)
0; = (1+n)"

Reproduction:
Ci —> 0;°S
clones

Intact
offspring

Y

\ atasion

A
Mutated
offspring

|

Population size
adjustment

Several other features (recombination, meta-constraints, candidate memorization, momentum, etc.)
are not shown because they were turned off for the simulations discussed here; see paper for de-
tails.



3 Approximation to gradual reweighting

(19) Large population size N plus small weight quantum ¢ plus fitness-insensitive population-size
adjustment means that

a. macro-constraints approximate HG constraints with continuous weights
b. mutants created on any error sample the space of possible micro- constraints densely

¢. model’s only record of past success of macro-constraints is their population size

= learner should approximate a model with continuous, gradually-updated weights and a rich pre-
specified constraint set (e.g., the Configural Cue Model of Gluck and Bower 1988a,b, the Gradual
Learning Algorithm of Boersma 1997; Boersma and Hayes 2001, or the IMECCS/GMECCS model of
Pater and Moreton 2012; Moreton et al. 2017).

(20) How could we tell if it’s doing it right? A characteristic of such models is that they learn single-
feature (“Type I”) patterns faster than three-way gang-effect (“Type IV”) patterns, and those faster
than exclusive-or (“Type II”) patterns (Moreton et al., 2017). Real-life examples of the relevant
patterns, located by analyzing P-Base (Mielke, 2008; Moreton and Pertsova, 2014).

[-back] [+back] Type I: The vowel inventory of Turk-

[tnd] [+rnd] | [tnd] [+rnd] ish. DBoxes enclose vowels which cause

[+high] i u ?}egcotndary I;ag)lg;ali?zlz;tion of adjacent /k g/

[-voice] [+-voice] Type II: The consonant inventory of Un-

[distr] [+distr] | [-distr] [+distr] | ami Delaware (Goddard, 1979). Boxes en-

. close sounds that can precede non-coronal

[-cont] t ptLk . :

[+-cont] [ x h 1 W] stops; they are [+cont] iff [—voice].

[~back] [+back] Type 1V: The boxes enclose those Kirghiz

[rnd] [+rnd] | [tnd] [+rnd] Yowels which undergo raising and tens-

[+high] 0 ing before palatal conson%nts (Hebert. apd

[ high] el . a o Poppe, 1963, 3-7). lLe., “anything within

one feature of /i/”.

(21) Humans doing unsupervised phonological learning exhibit the same difficulty order. Illustration:
Moreton et al. (2017, Exp. 1).

a. Stimuli: MBROLA-synthesized C;V,C2Va words with inventory /t k d g/ /i u & o/ (Moreton,
2008; Lin, 2009; Kapatsinski, 2011; Moreton, 2012).

b. Phonotactic patterns: For each participant, 3 of the 8 stimulus features were randomly chosen
as the relevant features, and then randomly mapped onto the three logical features defining the
Shepard pattern to produce the “language” for that participant. Examples:

L1 (TYPE I):

C1 is voiceless

tigu, kada, tika, kugu, ...

C1 is voiced iff C2 is voiceless.

diku, taegi, kage gata, ...

At least two of: C1 is voiced, C2 is dorsal, V2 is back
kaga, gagu, geku, txki, ...

L2 (TYPE II):

L3 (TYPE IV):

c. Instructions: Participants (who were run in a lab, by a human) were told they would learn to
pronounce words in an artificial language, and then be tested on ability to recognize words in
that language.



d. Training: They listened to and repeated aloud 32 randomly-chosen pattern-conforming stimuli
4 times over.

e. Test: Then they heard 32 randomly-chosen pairs of new stimuli (one pattern-conforming, one
not) and tried to identify the one that was “a word in the language you were studying”.

f. Results: I > IV > II order, matched by GMECCS

(22) Can the Evolutionary Winnow-MaxEnt Subtree learner replicate this difficulty order? Simulation
2 from Moreton (2020):

a. N = 2000 micro-constraints, ¢ = 0.05 weight units per micro-constraint. Population adjustment
step ignored fitness. 100 replications in each condition.

b. Trained using same phonological stimuli as humans (same 32 words, repeated 4 times). Losers
were generated by sampling from the distribution specified by the current grammar (Jager,
2007).

c. Tested on same phonological stimuli as humans (same 32 novel pairs)

(23) Proportion pattern-conforming responses in the test phase (£ 1 s.d., not s.e.m.) for Simulation 2,
GMECCS (Moreton et al., 2017, Figure 10), and human data (Moreton et al., 2017, Table 5), showing
I > 1V > II order.

Pattern type

I IT 1Y
Simulation 2 0.83 +£0.13 0.48 £0.02 0.60 £ 0.05
GMECCS 0.72 0.58 0.66
Human 0.73+0.12 0.57+0.11 0.70 £ 0.09

= As expected, a large population size and a small weight quantum yielded the I > IV > II
performance characteristic of a gradient-ascent Max-Ent learner with a rich set of prespecified con-
straints.

(24) How did it happen?

a. Many simulated participants found a wholly valid constraint for Type I, or a partially-valid
single-feature approximation for Type IV. But Valid constraints for Type II were hard to find
— no simulated participant in this run found even one.

b. That happened because of the large mutation distance between the initial constraints (* [+wug],
*[-wug]) and the deep forked tree required by the Subtree Schema for the two-segment Type
IT pattern.

c. Different from how I > IV > II arises in GMECCS, where all necessary constraints were
furnished in advance and Type II was slow because the positive stimuli had fewer positive
neighbors than in Types I and IV (Moreton et al., 2017, §4.1.2).

4 Approximation to serial hypothesis testing

(25) Small population size N plus large weight quantum ¢ plus fitness-based population-size update
means

a. each micro-constraint affects a candidate’s harmony so much as to be in effect a categorical rule

b. making one error can ban a micro-constraint permanently (error — low fitness — eliminated;
when re-innovated, it starts off with the same low fitness and so doesn’t make the cut at the
population-adjustment step)



= should approximate a serial hypothesis-tester that keeps trying one categorical rule after another
until it finds one that works (e.g., Nosofsky et al. 1994; Feldman 2006; Ashby et al. 2011).

(26) The characteristic order of difficulty in visual concept-learning is I > II > IV (e.g., Shepard
et al. 1961; Nosofsky et al. 1994; Smith et al. 2004; see critical review in Kurtz et al. 2013).

Pattern Types I, II, and IV of Shepard
et al. (1961), illustrated using visual stim-
uli. Type I is defined by one feature
(“the figure is black”); Type II is an iff /xor

® m ® A ® A relation between two features (“black iff

E| [A] El A ® [A] round”); and Type IV is a three-feature
gang effect (“at least two of white, trian-

o A O @ o @ gular, small”).

o A o [a] o] [a]

I IT v

(27) Serial hypothesis-testing models in the concept-learning literature account for I > I > IV by
positing a hard-wired bias towards hypotheses which involve fewer features (Shepard et al., 1961;
Nosofsky et al., 1994; Feldman, 2006; Ashby et al., 2011; Goodwin and Johnson-Laird, 2013).

(28) The bias in the Winnow-MaxEnt-Subtree learner has a different origin.

a. For small population size N and large weight quantum (, the handful of constraints act like
individual categorical prohibitions.

b. The minimal large- grammar for each Type is shown below. E.g., Type I requires only con-
straints about the color feature (vertical axis): *[-wug, +black] (clear oval) and *[+wug,
-black] (hatched oval).

| I1 vV

. i,
/‘% % A, ?/"

@ =%
‘/////775

I8

A

O —4¢
vy Y
*—@

2 constraints 4 constraints 6 constraints

M el
=2

N

N

>
@ g

c. = Small N/large ¢ should favor Type I over Type II, and Type II over Type IV.

(29) Simulation 3 used N =7, = 12.
a. High mutation rate plus large clutch size (s = 12) made the offspring population a diverse
random sample from the 54 possible constraints.

b. Fitness-based population adjustment plus fitness memory (a re-innovated lost constraint resumes
the fitness it last had) gradually eliminates constraints that favor losers

c. Offspring population becomes more and more a random sample of size 7 from the valid con-
straints

d. A random sample of size 7 valid constraints is more likely to solve Type I than Type II, and
Type II than Type IV (see paper for details).



(30) Attainment of criterion performance (32 consecutive correct responses in 400 trials) for Simulation
3 and human participants (Nosofsky et al., 1994, 356). Mean trials to criterion excludes cases where
criterion was not reached. There were 100 replications.

% participants Mean trials

reaching criterion to criterion
I IT v I I I
Sim. 100 98 74 68 161 210
Human 100 100 100 44 85 127

(31) = Changing the model parameters has caused Types II and IV to change places with respect
to Simulation 2. The order of difficulty, I > Il > IV, is the same for the learner as for the humans
(who are about 40% faster in all conditions).

Smaller values of N amplified the advantage of Type II over Type IV. For N < 5, no Type IV
simulations reached criterion.

(32) Check: Is the difference between Simulations 2 and 3 really due to the change in learning
parameters (and not to the change in the stimulus space)? Yes: When the parameters are set as in
Simulation 2 (large population, small weight quantum, fitness-insensitive population adjustment), the
I > IV > II order is restored:

% participants Mean trials
reaching criterion to criterion

I II v I I Iv

Sim. 100 100 100 70 196 155

5 Discussion

(33) Big Question: How is phonological learning like or unlike learning in other domains?

(34) Proposed phonological learning models have been architecturally very different from proposed
models for visual pattern learning: gradual weight update vs. serial hypothesis testing.

(35) But both types of model have something in common: They both depend on finding formulas
(symbolic objects) by trial and error.
a. Obvious for serial hypothesis testers.

b. Phonological learners that use gradual weight update must induce at least some of their con-
straints from the phonological data (e.g., constraints that are specific to particular lexemes,
lexical strata, inflectional paradigms, etc., or that refer to phonetically-arbitrary or otherwise
idosyncratic patterns — see refs in paper)

(36) In the Evolutionary Winnow-MaxEnt-Subtree model, we have a single model whose behavior can
approximate that of two other model types.

a. Large population/small weight quantum ~ parallel search for constraints

b. Small population/large weight quantum = serial search for categorical rules



(37) Specifically, the learner can get both of two signature difficulty orders for the Shepard et al. 1961
pattern types:

a. I > 1V > I1I:
(i) When humans show it: Unsupervised phonotactic learning (Moreton and Pertsova, 2016;

Moreton et al., 2017; Gerken et al., 2019); sometimes in supervised visual concept learning
(Kurtz et al., 2013, Exp. 7)

(il) How GMECCS gets it: Greater neighborhood density (for Type I than IV, and IV than II)
= more constraint overlap and hence faster harmony gain (Moreton et al., 2017, §4.1.2).

(iii) How FEvolutionary Winnow-MaxEnt-Subtree gets it: Large population, small weight quan-
tum, fitness-insensitive population adjustment =- Finds one-feature approximations to
Types I and IV, but more-complex constraints needed for Type II take much longer.

b. I>I1I>1V

(i) When humans show it: Supervised visual concept learning, when rule-seeking is encouraged
(Shepard et al., 1961; Nosofsky et al., 1994; Smith et al., 2004; Kurtz et al., 2013)

(ii) How serial hypothesis-testing models get it: Hard-wired bias in favor of hypotheses that use
fewer features

(iii) How Ewvolutionary Winnow-MazxEnt-Subtree gets it: Small population, large weight quan-
tum, fitness-sensitive population adjustment =- invalid constraints gradually become un-
available, and a valid grammar becomes more and more likely to arise by chance.

(38) How else might evolutionary ideas be applicable in phonological learning? Some possibili-
ties:

a. Abruptness is a familiar aspect of first-language acquisition (“across-the-board” changes, e.g.,
Smith 1973; Macken and Barton 1978; Vihman and Velleman 1989; Barlow and Dinnsen 1998;
Levelt and van Oostendorp 2007; Gerlach 2010; Becker and Tessier 2011; Guy 2014), and has
been observed in lab-learned phonology (Moreton and Pertsova, 2016). One possible source is
constraint discovery (Becker and Tessier, 2011; Moreton, 2019).

b. Priming of new constraints by old ones. More-successful macro-constraints spawn more mutants,
causing the constraint space around themselves to be searched more intensively. This could steer
language change so as to cause a language to idiosyncratically re-use the same features across
multiple patterns in its grammar (see Carter 2017 for some relevant findings).

c. Fvolving candidates from an input to find most-harmonic output — a sort of evolutionary version
of Serial Harmonic Grammar (McCarthy, 2010).

d. Storing instances to make lexically-specific constraints (Pater, 2009; Moore-Cantwell and Pater,
2016). Those can then evolve towards more generality — a sort of evolutionary version of
exemplar theory (Pierrehumbert, 2001, 2002; Kirchner et al., 2010; Pierrehumbert, 2016).

(39) Some reasons for skepticism (about this model, not about evolutionary computing in gen-
eral):

a. Evolutionary Winnow-MaxEnt-Subtree seems to predict that gradual weight update and serial
hypothesis testing are mutually exclusive, at least at any particular time. (Potential fix: Test
to see if they are.)

b. Many combinations of parameter settings yield poor learning. (Potential fix: Simplify the model
to shrink parameter space.)

c. Learning phonotactics from winner-loser pairs, or even n-tuples, is suspect in terms of cognitive
realism — generating well-formed nonsense words is not something most people do readily.
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