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1 Introduction

(1) Context:

a. Language typology is determined by the relative rates at which phonological patterns are
innovated and extinguished (Bell, 1971; Greenberg, 1978), which in turn depend on interaction
between the learner’s inductive biases and the variation in the learning data (Myers, 2002;
Moreton, 2008a).

b. ⇒ To understand typology, we need to find out what those biases are, and how they affect
the acquisition of phonological patterns.

(2) This talk is about modelling two inductive biases related to the featural complexity of patterns.
Preview of main points:

a. Learning a phonological pattern is easier when only a single feature is needed to characterize
it, whether within or between stimuli. What the features actually are doesn’t seem to matter.
(Becker et al., 2007; Moreton, 2008a). Models of human phonotactic learning need to capture
these facts.

b. Non-phonological learning shows a similar advantage, at least for between-stimulus complex-
ity.

c. All these effects can linked via the Delta Rule, an incremental error-driven learning rule which
figures in models of both phonological (Boersma, 1997; Boersma and Hayes, 2001; Pater, 2008;
Magri, 2008; Boersma and Pater, 2008) and non-phonological learning (Rescorla and Wagner,
1972; Gluck and Bower, 1988a,b; Kruschke, 1992; Love et al., 2004).

d. The indifference of the simplicity bias to featural content means it has to apply to induced
constraints. A working model in the Harmonic Grammar framework is presented in which
constraints are induced by an evolutionary algorithm, with reproductive fitness being deter-
mined by the Delta Rule. The model exhibits the within- and between-stimulus simplicity
biases.

2 Simplicity bias in phonotactic learning

(3) Paradigmatic (between-stimuli) simplicity bias: A phonological category is often easier to learn
(and never harder) when it is definable in terms of a single phonetic feature, or a small number of
them, than when its phonetic categorization is complex or arbitrary.

1I owe thanks to many people for discussion of the ideas and facts presented here, especially Adam Albright, Joe
Pater, Jen Smith, Anne-Michelle Tessier, and Alan Yu, as well as audiences at UMass/Amherst, the Workshop on
Computational Modelling of Sound Pattern Acquisition at the University of Alberta, and MIT. The modelling work
is part of a collaboration with Joe Pater and Michael Becker. Email may be addressed to moreton@unc.edu.
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E.g., LaRiviere et al. (1974); Healy and Levitt (1980); Pycha et al. (2003); Saffran and Thiessen (2003);
Peperkamp et al. (2006); Pycha et al. (2007); Cristiá and Seidl (2008); Kuo (2009)

(4) Example: LaRiviere et al. (1974). Participants heard Ca syllables and learned to sort them
into two categories by immediate feedback. Performance depended on how the categories were
constructed:

Separable Arbitrary
[+strid] [–strid] — —

[SA] [DA] [SA] [DA]
[dZA] [lA] [lA] [dZa]
[zA] [kA] [zA] [kA]
[sA] [ha] [hA] [sA]
pcorr = 0.79 > pcorr = 0.55

(5) Syntagmatic (within-stimulus) simplicity bias: Phonological patterns involving within-stimulus
dependencies are easier if the dependency is between two instances of the same feature.

Examples: Wilson (2003); Moreton (2008a). Not found by Seidl and Buckley (2005, Exp. 2).

(6) Example from own unpublished data. Stimuli: MBROLA-synthesized C1V1C2V2 words with
inventory /t k d g/ /i u æ O/. Five patterns:

Condition C1 V1 C2 V2

HV (baseline) [α high] [α voiced]
HH [α high] [α high]
VV [α voiced] [α voiced]
HB [α high] [α back]
PV “[α velar]” [α voiced]

Two conditions in each experiment: HV as baseline, and one of the others for comparison. Partici-
pants (9 per condition) listen to and repeat pattern-conforming words, then listen to pairs of novel
words (one pattern-conforming, one not) and choose the one you think is “a word of the language
you studied”.

(7) Results (logistic-regression coefficients, 0 = no effect on odds of choosing pattern-conforming
test word): HH and VV (single-feature dependency) better than HB and PV (two-feature depen-
dency).

Coefficient HH VV HB PV
(Intercept) 0.274 0.157 –0.099 –0.211
Studied XY 0.716 * 0.736 * 0.495 . 0.484 .
V1 = V2 or C1 = C2 –0.259 –0.480 * — —
2nd half –0.278 0.022 0.104 0.169
Studied XY × 2nd half –0.059 –0.540 –0.583 –0.428
XY-nonconforming 0.101 0.271 * –0.115 0.211 .
1st in pair 0.465 ** 0.468 ** 0.455 ** 0.493 **

(8) Summary: Phonological patterns are easier to acquire in the lab when they can be characterized
by a single feature, either between or within stimuli.
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3 Simplicity bias in non-linguistic category learning

(9) Phonological learning is a kind of category learning (the learner acquires the ability to classify
utterances as legal, illegal, or in between). Does category learning in phonology work like category
learning in other domains?

(10) Single-feature categories are easier to learn in non-linguistic contexts too (Shepard et al.,
1961; Nosofsky et al., 1994; Ashby et al., 1999). There is a hierarchy of difficulty from there on up.
Example from Nosofsky et al. (1994) (figures redrawn from there and Griffiths et al. (2008)):

(11) Compare Kuo (2009): Acquisition of new onset phonotactics by Mandarin Chinese speakers.
Mandarin allows syllables of the form Consonant-Glide-Vowel-(X); in experiment, glide (j/w) de-
pended on one or more properties of the initial consonant. Results (pooled across test blocks):
Proportion correct, significance by t-test vs. chance (=0.50):

Condition Shepard type Old New
PoA II 0.68 *** 0.62 ***
Aspiration II 0.67 *** 0.59 ***
Both VI 0.58 * 0.51 n.s.

(12) Non-linguistic parallels to syntagmatic simplicity bias are much harder to find, primarily
because non-linguistic stimuli don’t often have multiple instances of a single feature Medin et al.
(1982); Billman and Knutson (1996).
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4 Simplicity bias and the delta rule

(13) Summary so far: Phonotactic learning is subject to inductive bias favoring paradigmatically-
and syntagmatically-simpler patterns. The paradigmatic-simplicity bias, at least, is shared with
non-linguistic learning.

(14) There is a long history in phonology of proposed grammatical biases having to do with featural
complexity:

a. Preference for rules or constraints involving fewer representational elements (Chomsky and
Halle, 1968; Clements, 1995; Sagey, 1990; Clements and Hume, 1995; Gordon, 2004).

b. Preference for within-tier over cross-tier dependencies (Goldsmith, 1976; McCarthy, 1981;
Newport and Aslin, 2004).

c. Preference for dependencies between featurally-similar units (Frisch et al., 2004; Rose and
Walker, 2004; Onnis et al., 2005).

d. Hard upper limit on representational elements in rule or constraint (Hayes, 1999; Hayes and
Steriade, 2004; Hayes and Wilson, 2008)

(15) These biases are normally imposed on the learner as heuristics used in choosing between
grammars. Is there some way to derive them instead? Let’s see:

(16) In classical Optimality Theory (Prince and Smolensky, 1993), constraints are ranked. There
are alternatives in which constraint dominance is instead expressed by a real number: Harmonic
Grammar (Legendre et al., 1990); Stochastic OT (Boersma, 1997); Maximum Entropy grammar
(Goldwater and Johnson, 2003).

(17) There are incremental learning algorithms for StOT (Boersma, 1997; Boersma and Hayes,
2001), HG (Pater, 2008; Boersma and Pater, 2008), and ME (Jäger, xxxx) which change the
constraint weights only when the learner makes an error, whereupon the “Delta Rule” is applied
to derive the new weights −→r ′:

−→r ′
j = −→r j + η · (cj(i, otrain)− cj(i, o))

(18) Because −→r changes only when the learner makes an error, and because the Delta Rule strength-
ens or weakens constraints in proportion to their contribution to the error, constraints prosper when
they explain data which other constraints don’t explain.

I.e., constraints compete to explain the training data, and success is rewarded with influence.

(19) Observation: If constraints are stated in terms of phonetic features, then featurally-simpler pat-
terns are supported by more-general constraints (constraints which apply to more stimuli), whereas
featurally complex patterns are supported by parochial constraints (Pater et al., 2008).
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Simple: [ptk] vs. [bdg] Complex: [pdk] vs. [btg]
*[+voice] *b *d *g

→p
→t
→k

b –1 –1
d –1 –1
g –1 –1

*[+voice] *b *t *g

→p
→d –1
→k

b –1 –1
t –1
g –1 –1

Simple: Voice-voice Complex: Height-voice
Agree-
[voi]

*[–voi]
[+voi]

*[+voi]
[–voi]

→p@p
→b@b

p@b –1 –1
b@p –1 –1

*[–voi]
[+voi]

*[+voi]
[–voi]

→æp
→Ib

æb –1
Ip –1

(20) Example: [p t k] vs [b d g] is learned faster than [p d k] vs. [b t g] (simulation using ME
learner in Praat (Boersma and Weenink, 2010)):
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(21) The Delta Rule also plays a major role in models of

a. Human category learning: Category cues (e.g., “has fever”) instead of constraint violations
(the configural cue model (Gluck and Bower, 1988a,b), ALCOVE (Kruschke, 1992), SUSTAIN
(Love et al., 2004)).
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b. Classical conditioning in non-humans: Elements of a compound stimulus (e.g., “blue light”)
instead of constraint violations (Rescorla and Wagner, 1972).

In these models, it does the same thing it does in HG-GLA, viz., strengthen associations between
a category and a cue when the cue makes an unexpected correct prediction.

It thus provides a link, and a reason for the commonalities, between phonological learning and
other kinds of learning.

5 Constraint induction and the Subtree Schema

(22) If constraint weights are learned using the Delta Rule, then the problem of why simpler patterns
are easier reduces to that of why the simpler patterns are supported by more-general constraints
(= more-valid cues).

E.g., the theory needs to insure that there is a single constraint *[+voice], but not a single constraint
*[b ∨ t ∨ g].

(23) We can’t assume that the human or model learner comes into the experimental condition with
the right constraint set already, since the simplicity advantage does not seem to depend on the
specific content of the features.

(24)⇒ Learner needs to induce constraints from data, but do so in such a way that syntagmatically-
and paradigmatically-simpler patterns end up with more-general constraints.

(25) Current constraint-induction models use constraint schemas which are too restrictive for this
problem:

a. No syntagmatic feature variables—can’t express iff/xor constraints like Agree or OCP (Gildea
and Jurafsky, 1995; Albright and Hayes, 2002; Heinz, 2007; Hayes and Wilson, 2008).

⇒ No general constraints for syntagmatically-simple patterns like [α high][α high]. (But see
Sunday’s presentation by C. Wilson.)

b. Practical limits on constraint complexity in order to make exhaustive search feasible, causing
difficulties with non-adjacent dependencies (see discussion in Hayes and Wilson (2008, 6.2))

(26) Preview of alternative approach:

a. Constraint schema uses representational (sub-)tree to describe locus of violation/satisfaction.
⇒ Every representation is itself a constraint (Burzio, 1999).

b. Variables for tree nodes allow within-stimulus dependencies, e.g., [α Place]. . . [α Place].

c. Resulting infinite constraint space is searched non-exhaustively using evolutionary algorithm
(e.g., Eiben & Smith 2003).

d. Fitness determined by Delta Rule; numerosity plays role of weight.

e. Induction and “weighting” of constraints happen simultaneously (Hayes and Wilson, 2008).
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5.1 Subtree Schema

(27) Representational system based on Gussenhoven and Jacobs (2005, Ch. 5) (omits onset/nucleus/coda,
feet, and moras). Example: coffee. Heads are enclosed in a box.

[’kh O. f i j]

L PrWd R

L Syllable R

[Root]
.[Place]
..[Dor]
...[+hi]
...[-bk]
...[-lo]
.[-nas]
.[+cons]
.[-approx]
.[-son]
.[-lat]
.[-cont]
.[Lar]
..[+spr
gl]
..[-voi]

[Root]
.[Place]
..[Dor]
...[-hi]
...[+bk]
...[+lo]
..[Lab]
...[+rnd]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]

L Syllable R

[Root]
.[Place]
..[Lab]
.[-nas]
.[+cons]
.[-approx]
.[-son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[-voi]

[Root]
.[Place]
..[Dor]
...[+hi]
...[-bk]
...[-lo]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]

[Root]
.[Place]
..[Dor]
...[+hi]
...[-bk]
...[-lo]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]
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(28) A constraint is just a representation, rooted at a PrWd, with a +1 or –1 to indicate whether
it rewards or punishes each match. Here’s Onset, à la Smith (2006):

Onset Matches once in it not in bit twice in ih-uh
-1

- PrWd -

L Syllable -

[Root]

L PrWd R

L Syllable R

[Root]
.[Place]
..[Dor]
...[+hi]
...[-bk]
...[-lo]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]

[Root]
.[Place]
..[Cor]
...[+ant]
...[-dist]
.[-nas]
.[+cons]
.[-approx]
.[-son]
.[-lat]
.[-cont]
.[Lar]
..[+spr
gl]
..[-voi]

L PrWd R

L Syllable R

[Root]
.[Place]
..[Lab]
.[-nas]
.[+cons]
.[-approx]
.[-son]
.[-lat]
.[-cont]
.[Lar]
..[-spr
gl]
..[+voi]

[Root]
.[Place]
..[Dor]
...[+hi]
...[-bk]
...[-lo]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]

[Root]
.[Place]
..[Cor]
...[+ant]
...[-dist]
.[-nas]
.[+cons]
.[-approx]
.[-son]
.[-lat]
.[-cont]
.[Lar]
..[+spr
gl]
..[-voi]

L PrWd R

L Syllable R

[Root]
.[Place]
..[Dor]
...[+hi]
...[-bk]
...[-lo]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]

L Syllable R

[Root]
.[Place]
..[Dor]
...[+hi]
...[+bk]
...[-lo]
..[Lab]
...[+rnd]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]

(29) ⇒ Less-stringent constraints match in more-stringent constraints. Fully-specified representa-
tions are the most-stringent constraints.

(30) Here are a few familiar constraints.

*CplxOns NoCoda *NC
-1

- PrWd -

- Syllable -

[Root] [Root] [Root]

-1

- PrWd -

- Syllable -

[Root] [Root]

-1

- PrWd -

- Syllable R

[Root]
.[+nas]

L Syllable -

[Root]
.[Lar]
..[-voi]
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Coronal palatalization Coda-Cond[voice] Intersonorant voicing PrWd≥ σσ
-1

- PrWd -

- Syllable -

[Root]
.[Place]
..[Cor]
...[+ant]

[Root]
.[Place]
..[Dor]
...[+hi]

-1

- PrWd -

- Syllable R

[Root]
.[-son]
.[Lar]
..[+voi]

-1

- PrWd -

- Syllable R

[Root]
.[-cons]
.[+son]

L Syllable -

[Root]
.[Lar]
..[-voi]

[Root]
.[-cons]
.[+son]

-1

L PrWd R

- Syllable -

(31) The value of a Greek-letter variable is an entire node and all of its dependents. E.g., [α
Cor]. . . [α Cor] only matches two Coronal nodes whose dependents, if any, agree in every respect.
Consequently, a configuration like [α Cor]. . . [α Lar] never matches anything.

(32) Some constraints with variables:

*Agree-[high] Nasal Place Assimilation Syllable alliteration
-1

- PrWd -

- Syllable -

[Root]
.[Place]
..[Dor]
...[+α hi]

- Syllable -

[Root]
.[Place]
..[Dor]
...[-α hi]

-1

- PrWd -

- Syllable R

[Root]
.[α Place]
.[+nas]

L Syllable -

[Root]
.[α Place]
.[-cont]

-1

- PrWd -

L Syllable -

[−α Root]

L Syllable -

[α Root]

5.2 The Delta Rule in constraint-set evolution

(33) Subtree schema permits general constraints only for simple patterns, setting learner up to
acquire final ranking faster. But it has to acquire the constraint set first!

(34) A standard solution for searching huge design space is non-exhaustive search by evolutionary
algorithm (e.g., Eiben and Smith, 2003).

(35) Harmonic Grammar (Legendre et al., 1990) is “Optimality Theory with weights”—the relative
importance of constraints is expressed as weighting, rather than ranking, and the weighted sum of
violations determines the winner.
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We’ll modify this so that all constraints have weight 1, but constraints can be repeated:

ORIGINAL MODIFIED
NoCoda *CplxOns

/atra/ 2.0 1.0
→a.tra –1 –1.0

at.ra –1 –2.0

NoCoda NoCoda *CplxOns
/atra/ 1.0 1.0 1.0
→a.tra –1 –1.0

at.ra –1 –1 –2.0

(36) Harmonic Grammar has an on-line learning algorithm, HG-GLA, which adjusts the weights
in response to errors (Boersma and Pater, 2008). The algorithm is based on the Delta Rule. If the
margin of harmony between outputs o1 and o2 should be ≥ t, but is actually a smaller quantity a,
the weights are altered slightly to weaken the o2-favoring constraints and strengthen the o1-favoring
ones:

∆wi = η · (Ci(o1)− Ci(o2)) · (t− a)

where η is adjustable to set the learning rate. (Boersma and Pater implement the margin-of-
harmony part in a different way, using “noisy HG”.)

(37) Modify the learning algorithm to work with multiplicities rather than weights:

a. ∆wi is interpreted as probability of reproduction (if positive) or deletion (if negative).

b. Number of constraints is a large fixed number; population is controlled by random deletion
(similar to “weight decay” in the perceptron; see Hastie et al. 2001, §3.4.3).

If no novel constraints are introduced during learning, the breeding-and-selection algorithm imple-
ments a penalized version of HG-GLA, and learns as if it were an ordinary HG learner.

(38) Now we let the constraints reproduce with variation, so that the Delta Rule acts as a selective
force in an evolutionary algorithm. Variation comes about in two ways:

a. Breeding with other constraints to yield offspring that randomly combine features of either.
The breeding algorithm is recursive; when two nodes are bred, their dependents are randomly
aligned and bred too. Example: Offspring of Onset and Pal:
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-1

- PrWd -

L Syllable -

[Root]

←−Onset Pal−→ -1

- PrWd -

- Syllable -

[Root]
.[Place]
..[Cor]
...[+ant]

[Root]
.[Place]
..[Dor]
...[-bk]

-1

- PrWd -

- Syllable -

[Root]
.[Place]
..[Cor]
...[+ant]

[Root]
.[Place]
..[Dor]
...[-bk]

L Syllable -

[Root]

-1

- PrWd -

- Syllable -

[Root]
.[Place]
..[Cor]
...[+ant]

[Root] [Root]
.[Place]
..[Dor]
...[-bk]

-1

- PrWd -

L Syllable -

[Root]
.[Place]
..[Cor]
...[+ant]

[Root]
.[Place]
..[Dor]
...[-bk]

b. The offspring then undergoes random mutation. Mutation is recursive (when a node is ex-
posed to the hazard, so are its dependents). Example: Successive mutations of Onset.

-1

- PrWd -

L Syllable -

[Root]

-1

- PrWd -

L Syllable -

[Root]
.[-son]

-1

- PrWd -

L Syllable R L Syllable -

[Root]
.[-son]

-1

- PrWd -

L Syllable R L Syllable -

[Root]
.[-approx]
.[-son]

(39) /Input/ on each trial is a random positive stimulus. Candidate [outputs] are that item (the
fully-faithful candidate) and one random negative stimulus.

(40) On error, all constraints favoring correct response get chance to breed. More-general con-
straints are relevant on more trials, and so breed faster when correct.

(41) Prior art: Evolutionary algorithms applied to evolving receptive fields for inputs to single-
layer perceptron (Nakano et al., 1995). Applied to evolving tree structures (Cramer, 1985; Koza,
1989).

This model is most similar to the configural-cue model (Gluck and Bower, 1988a, Figure 11), except
that it selectively evolves input nodes with successful receptive fields, rather than hard-wiring in
all possibilities.
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5.3 Simulations

(42) Predictions for supervised discrimination learning:

Simple: ptk vs. bdg Complex: pdk vs. btg
pIb tId kIg pæb tæd kæg pUb tUd kUg

vs.
bIp dIt gIk bæp dæt gæk bUp dUt gUk

pIb dIt kIg pæb dæt kæg pUb dUt kUg
vs.

bIp tId gIk bæp tæd gæk bUp tUd gUk
Prediction: Easier Prediction: Harder

(43) Initial constraint population: 10 copies of each positive training item as a positive con-
straint (rewards matches), and 10 of each negative training item as a negative constraint (punishes
matches). Similar to Albright and Hayes (2002) Minimal Generalization Learner—start with the
data and simplify it.

(44) Simulation results, 5 runs in each condition. Vertical axis is average harmony difference
between positive and negative stimuli, as a proportion of the target margin of separation. (This
would go through a squashing function to model response probabilities.)
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The final constraint population in Condition 1 is dominated by a single constraint type that prefers
voiceless onsets, voiced codas, or both; that in Condition 2 is a roughly equal mix of constraints
preferring specific segments.

(45) The theoretical maximum performance is never reached in either condition, because a certain
proportion of the population always consists of lower-quality mutants.
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(46) What about syntagmatic simplicity bias?

Simple: [α voice]. . . [α voice] Complex: [α high]. . . [α voice]
pæp pIp bæb bIb

vs.
bæp bIp pæb pIb

pæp bæp pIb bIb
vs.

pIp bIp pæb bæb
Prediction: Easier Prediction: Harder

(47) Initial constraint population: 25 copies of each positive and each negative training item as
positive and negative constraints.

(48) Simulation results:
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The final constraint population in Condition 1 is dominated by a single constraint type that prefers
voicing (or spread-glottis) agreement between the initial and final consonant. In Condition 2, the
lion’s share is divided evenly between two constraint types, one favoring [+high][+voiced] and the
other favoring [–high][–voiced].

(49)⇒Model does in fact show both paradigmatic and syntagmatic simplicity bias, in that learning
of the simpler patterns is faster and reaches a higher final level of performance. It does this
because

a. It evolves its constraint set according to the Delta Rule, favoring more-general solutions when
they are available.

b. The constraint schema determines how general a solution is possible for any given pattern.
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(i) Use of representational subtrees as constraints is root cause of paradigmatic simplicity
bias.

(ii) Incompatibility of Greek-letter variables in different feature contexts (e.g., [α Place][α
Laryngeal]) is root cause of syntagmatic simplicity bias.

c. The evolutionary algorithm allows the (infinite!) space of possible constraints to be searched
relatively efficiently.

d. The pdk/btg and HV simulations show the development of a “constraint ecology” in which
different constraint types coexist stably, each one making just enough mistakes to feed the
others without starving itself.

6 Discussion

(50) Empirical problem: Paradigmatic and syntagmatic simplicity bias, in phonology and else-
where.

(51) Core of solution: The Delta Rule facilitates acquisition of patterns which are supported by
more-general constraints (Pater et al., 2008). Link between phonological and non-phonological
learning; applies across wide range of phonological and non-phonological learning models.

(52) Main beneficial features of the subtree/delta-rule model

a. Constraints-as-subtrees

(i) No arbitrary limit on constraint size; (some) long-distance dependencies handled straight-
forwardly.

(ii) Integration of prosodic and Feature-Geometric structure (in both constraints and repre-
sentations)

i. Restricts constraint space

ii. Induces mutation and breeding algorithms

b. Non-exhaustive search using evolutionary algorithm; fitness determined by Delta Rule.

(i) Connection to non-linguistic category learning.

(ii) Simplicity/generality preference emerges from the way the acquisition mechanisms work,
rather than being imposed from outside as a grammar-selection criterion (Hale and Reiss,
2000, fn. 8, p. 164).

(53) No other model at present explains syntagmatic simplicity bias, because none of them repre-
sent the predicate “two instances of the same feature”. This is true for both phonological (Gildea
and Jurafsky, 1995; Albright and Hayes, 2002; Heinz, 2007; Hayes and Wilson, 2008) and psycho-
logical (Rescorla and Wagner, 1972; Gluck and Bower, 1988a,b; Kruschke, 1992; Love et al., 2004)
models.

How hard would it be to modify them to do so?
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(54) ⇒ Explanatory focus shifts to

a. Constraint schemas, generation, and testing (Boersma, 1998; Hayes, 1999; Smith, 2002, 2004;
Boersma and Pater, 2007). E.g.,

(i) Can Constraint X be expressed in a single constraint, or do we need more than one? (As
in the syntagmatic and paradigmatic exx. above.)

(ii) How many extensionally-equivalent ways are there to express Constraint X? The more
there are, the sooner one will be found!

b. If constraints are representations, convergence of constraint schemas with representational
schemas like Feature Geometry.

c. If space is searched by mutation and selection, considerations of mutation algorithm. Muta-
tion distance between constraints also depends on choice of schema.

(55) Most serious problems with model:

a. Requires explicit negative data (losing candidates) during training.

(i) Possible solution for lab situation: Use L1 lexicon as negative data.

(ii) However, this doesn’t work for the HH/HV experiment: The positive training items differ
from the run of the English lexicon in too many ways. The learner finds a near-perfect
solution that is almost never the “right” one.

(iii) Also, that approach can’t be used when what is being learned is the L1 itself.

b. Delta Rule leads to low long-term constraint diversity, since successful general constraints
block acquisition of more-specific constraints. ⇒ Won’t find niche generalizations like the
more-thorough searches of Albright and Hayes (2006); Hayes and Wilson (2008). Do we need
exhaustive search after all?

c. Fixed population size imposes artificial upper limit on performance (no overlearning).

d. No faithfulness constraints.

e. Can’t ignore prosodic structure (see examples in (30) above).

(56) Empirical questions:

a. Do the Shepard et al. (1961) results on paradigmatic simplicity bias hold for phonological
stimuli? If not, when do they break down?

b. Are syntagmatic-simplicity-bias effects unique to phonology?

c. Do the standard Rescorla-Wagner-type effects turn up in phonology? E.g., does learning to
solve a problem using one constraint block subsequent discovery of another?
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