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1 Introduction

(1) Knowledge of language is largely knowledge of featurally-defined patterns, and language
learning is, to a great extent, pattern learning. Main research questions of this project (a
collaboration with Joe Pater of UMass-Amherst):

a. How does the formal structure of a linguistic pattern affect its learnability in the lab?

b. Does pattern structure affect learning alike or differently across the phonological, mor-
phological, and non-linguistic domains?

c. What implications do formal-structure effects have for the architecture of learning models?

d. Does pattern structure affect learning in the lab the same way it affects typological fre-
quency across natural languages?

(2) Formally identical patterns can occur in different domains both within linguistics and outside
it. Here two logical features are instantiated by pairs of phonological, morphological, and visual
features:

a. Phonology
Consonant

Vowel short long

short *lam lamm

long la:m *la:mm

b. Morphology
Number

Case sing. pl.

Acc. mur mur-s
Nom. mur-s mur

c. Non-linguistic game
Shapes

Colors One Many

One Illegal Legal

Many Legal Illegal

Swedish: Either the vowel
or the consonant of a closed
stressed syllable is long, but
not both (Löfstedt, 1992).

Old French: /-s/ is attached
to an o-stem noun if it is nom-
inative or plural, but not both
(Luquiens, 1909, §289).

Qwirkle: In a row of tiles, ei-
ther the colors or the shapes
must differ, but not both
(Ross, 2006, 2).

(3) Outline of this talk:

§2 describes the Shepard hierarchy, a series of patterns on 1 to 3 binary features that has
been extensively studied in the non-linguistic pattern-learning literature.

§3 Experiment 1: The Shepard hierarchy is not replicated in a typical “artificial language
learning” experiment.

§4 Experiment 2 (in progress, 61%): When the Experiment 1 stimuli are replaced by closely-
matched visual analogues, the results are pretty much the same.

§5 Discussion: How do these results relate to the questions we started with?

1The work reported here is part of a collaboration with Joe Pater of UMass-Amherst. It has has benefited
from discussions with many colleagues, especially Jen Smith (UNC-Chapel Hill), and from audiences at CLS
and the Manchester Phonology Meeting earlier this year. We are grateful to Jessica Slavic for assistance with
subject-running. All errors are the exclusive responsibility of the authors.
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2 The Shepard hierarchy

(4) One structural effect on pattern difficulty that has been extensively studied in the psychology
literature is a hierarchy of increasing difficulty for patterns defined on three logical dimensions,
instantiated here by the visual dimensions of color, shape, and size (Shepard et al., 1961).

Easiest Hardest

One feature Two features “Two and a half” features Three features

• N
• N

◦ M
◦ M

• N
• N

◦ M
◦ M

• N
• N

◦ M
◦ M

• N
• N

◦ M
◦ M

• N
• N

◦ M
◦ M

• N
• N

◦ M
◦ M

I II III IV V V I

∗ ∗ ∗

(5) The difficulty order I > II > {III, IV, V } > V I has been replicated many times in
supervised learning of visual categories (Shepard et al., 1961; Neisser and Weene, 1962; Nosofsky
et al., 1994; Feldman, 2000; Love, 2002; Smith et al., 2004), and models of general pattern
learning are often evaluated on their ability to reproduce it (Gluck and Bower, 1988a; Anderson,
1991; Kruschke, 1992; Nosofsky et al., 1994; Love et al., 2004; Feldman, 2006).

(6) The easier Shepard types are also more frequent, compared to a chance model, than the
harder ones in the Mielke (2008)’s P-Base database of “phonologically active classes”. (See
Appendix for explanation.)

I II III IV V VI

[+syll] Orig. 840 216 439 197 133 3
(V) Res. 79 52 322 110 251 8

Ratio 10.63 4.15 1.36 1.79 0.52 0.38

[–syll] Orig. 2469 878 3909 2202 2857 79
(C) Res. 107 100 725 379 604 35

Ratio 23.07 8.78 5.39 5.81 4.73 2.26

(7) Previous phonological studies have compared Type I with Type II, or Type II with Type
VI. They have invariably replicated the I > II and II > V I orders (see Moreton and Pater
2012 for a review). Examples:

Cristiá and Seidl (2008) Kuo (2009)
(infants, I > II) (adults, II > V I)
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(8) Although Experiments 1 and 2 address all six types, this talk will focus on Types I, II, and
IV (starred in 4 above):

Type I: Only one feature matters.

Type II: Two correlated features.

Type IV: “Family resemblance” (prototype) structure.

3 Experiment 1: Pattern structure and difficulty in phonological learning

(9) Experiment 1 compared all 6 types using a typical “artificial-language” methodology.

a. Stimuli : MBROLA-synthesized C1V1C2V2 words with inventory /t k d g/ /i u æ O/, used
previously by Moreton (2008); Lin (2009); Kapatsinski (2011); Moreton (2012). There
were 256 possible words.

Stimulus segment
σ1 σ2

Feature C1 V1 C2 V2

voiced ± ±
Coronal ± ±
high ± ±
back ± ±

Consonants Vowels

k t g d æ O i u

– – + +

– + – +

– – + +

– + – +

b. Participants: 141 (out of a planned 144) paid volunteers from the UNC-Chapel Hill com-
munity, self-screened for normal hearing and native English. Each participant was ran-
domly assigned to one of Types I–VI (24 people per Type).

c. Patterns: For each participant, 3 of the 8 stimulus features were randomly chosen, then
randomly mapped onto the 3 logical features defining the Shepard type to define a “lan-
guage”. Examples:

TYPE I: C1 is voiced
digu, gada, dika, gugu, . . .

TYPE II: C1 is voiced iff V2 is back.
digu, tægi, kagæ gada, . . .

TYPE IV: At least two of: C1 is voiced, V2 is high, V2 is back
kaku, digu, guki, dæka, . . .

Since patterns were randomly generated without regard to typological frequency or pho-
netic motivation, they were very likely to be “crazy rules” (Bach and Harms, 1972; An-
derson, 1981).

d. Instructions: Participants were told they would learn to pronounce words in an artificial
language, and then be tested on ability to recognize words in that language.

e. Familiarization: They listened to and repeated aloud 32 randomly-chosen pattern-conforming
stimuli 4 times over.

f. Test : Then they heard 32 randomly-chosen pairs of new stimuli (one pattern-conforming,
one not) and tried to identify the one that was “a word in the language you were studying”.
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(10) Results for Types I, II, and IV. Each plotting symbol represents one participant.
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(11) Analysis by mixed-effects logistic regression with Participant as a random effect and the
following fixed effects:

a. Type, I, II, IV, with I as the reference category

b. Nuisance variables Reduplicated and FirstInPair, explained in Moreton (2012).

(12) The fixed-effects part of the fitted model is shown below. Type I is the reference cate-
gory.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.98948 0.12616 7.843 4.40e-15 ***

Type_II -0.62149 0.16479 -3.771 0.000162 ***

Type_IV -0.19034 0.16520 -1.152 0.249254

FirstInPair 0.20454 0.09254 2.210 0.027084 *

Reduplicated -0.65904 0.14156 -4.655 3.23e-06 ***
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(13) The fitted model was used to test the I/II/IV contrasts, with significance levels adjusted
for multiple simultaneous comparisons (Hothorn et al., 2008). Results, compared to classic
Shepard results:

Classic Shepard Experiment 1

II IV

I > >

II — >

II IV

I > ∗ ∗ ∗ n.s.

II — < ∗

(14) Interim summary: Pattern structure affected learning in this experiment, but not in the
same way that it does in the classic Shepard experiments. In particular, the II > IV advantage
was reversed in Experiment 1.

(Compare similar results of Pertsova 2012 on morphological vs. non-linguistic pattern learn-
ing.)

4 Experiment 2: Non-phonological analogues

(15) Q. Do the results of Experiment 1 mean that phonological learning is inherently different
from visual category learning?

A. Not necessarily. There are findings in the literature that other factors can cause the classic
II > IV advantage to disappear or reverse even in visual pattern learning (Nosofsky and
Palmeri, 1996; Love, 2002; Smith et al., 2004; Kurtz et al., 2012).

(16) Exp. 1 was designed to be like other “artificial-language” experiment, which in turn are
designed to be like natural-language learning — and which therefore differ from the classic
Shepard experiments in several ways.

Classic Shepard Phonological learning (incl.
Exp. 1)

Exp. 2

Visual domain Phonological domain Visual domain

Easily verbalizable features
(“red triangle”)

Features hard for naive partic-
ipants to verbalize (“voiceless
velar”)

Easily verbalizable features
(“pink icing”)

Overt instructions to learn a
pattern

No mention of pattern in in-
structions

No mention of pattern in in-
structions

Positive and negative exam-
ples used in training; correc-
tive feedback on every trial
(“supervised” learning)

Only positive examples; no
feedback (“unsupervised”
learning)

Only positive examples; no
feedback (“unsupervised”
learning)

3 features 8 features, of which 3 are crit-
ical and 5 are distractors

8 features, of which 3 are crit-
ical and 5 are distractors

No within-stimulus structure Stimuli have internal prosodic
and feature-tier structure

Stimuli have analogues of
prosodic and feature-tier
structure

(17) ⇒ An alternative explanation for the II/IV reversal is that participants could reason
explicitly about the features of the visual stimuli used in the Shepard experiments, but not
about phonological features. Previous research shows that explicit learning can favor Type II
over Type IV (Love, 2002; Smith et al., 2004; Kurtz et al., 2012).

(18) Experiment 2 asks whether the II/IV reversal observed in Experiment 1 is reduced or
eliminated when the phonological stimuli are replaced by closely analogous visual stimuli, which
can be reasoned about explicitly.
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(For previous work on visual analogues of artificial-language experiments, see Finley and Badecker
2010.)

(19) Stimuli were 8-feature fancy cakes, organized into layers (' syllables) and body vs. deco-
ration (' vowels and consonants):

Stimulus segment
σ1 σ2

Feature C1 V1 C2 V2

voiced ± ±
Coronal ± ±
high ± ±
back ± ±

Nonlinguistic analogues
Layer 1 (Bottom) Layer 2 (Top)

Feature Decoration 1 Body 1 Decoration 2 Body 2

Diamond candy ± ±
Blue candy ± ±
White icing ± ±
Brown batter ± ±

(20) Each of the 256 possible stimulus words thus has an corresponding cake:

[dikæ] [kOgO] [kiki] [tugæ]

(21) Differences between Experiment 2 and Experiment 1:

a. Instructions: Participants were told that they would be learning to recognize “a particular
style of fancy cake”. They would first study cakes made in this style, then they would be
“tested on how well you can recognize them.”

b. Familiarization: Participants viewed 32 pattern-conforming cakes in random order 4
times. They could look at each cake as long as they liked.

Visual mask Blank screen Positive example

250 ms 250 ms > 2000 ms
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c. Test : 32 two-alternative forced-choice trials, each with one new pattern-conforming cake
and one non-conforming cake:

Fixation point Blank screen 2AFC option Visual mask

1000 ms 250 ms 2000 ms 250 ms

Blank screen 2AFC option Visual mask Blank screen

250 ms 2000 ms 250 ms > 250 ms

(22) Interim results (N = 88 out of 144)
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(23) Interim analysis (61% of planned data), same model as for Experiment 1. Fixed-effects
part of model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0724 0.2890 7.172 7.40e-13 ***

Type_II -1.9533 0.3976 -4.913 8.96e-07 ***

Type_IV -1.6286 0.3778 -4.311 1.63e-05 ***

FirstInPair 0.2507 0.1273 1.970 0.0489 *

Reduplication -0.2740 0.1934 -1.417 0.1566

(24) Comparison to typical Shepard results (significance levels adjusted for multiple compar-
isons):

Classic Shepard Experiment 1 Experiment 2 (61%)

II IV

I > >

II — >

II IV

I > ∗ ∗ ∗ n.s.

II — < ∗

II IV

I > ∗ ∗ ∗ > ∗ ∗ ∗
II — n.s.

In Experiment 1, Type IV was no harder than Type I, and was easier than Type II. In Experi-
ment 2, Type IV is (so far) harder than Type I and not easier than Type II.

(25) Interim summary: Switching to more-verbalizable visual stimuli has not (so far) restored
Type II to being easier than Type IV.

⇒ The isomorphic word and cake experiments seem to be engaging similar kinds of learning in
both domains.

5 Discussion

(26) The research questions from p. 1 again:

a. How does the formal structure of a linguistic pattern affect its learnability in the lab?

b. Does pattern structure affect learning alike or differently across the phonological, mor-
phological, and non-linguistic domains?

c. What implications do formal-structure effects have for the architecture of learning models?

d. Does pattern structure affect learning in the lab the same way it affects typological fre-
quency across natural languages?

5.1 Is phonological learning special?

(27) Is phonological learning special? Are the effects of pattern structure on learning difficulty
different in phonology and other domains?

(28) Experiment 1 showed that the order of pattern difficulty in a typical “artificial-language”
experiment differs from the order I > II > III, IV, V > V I found in the classic experiments
with non-linguistic categories. Experiment 2 (in progress) substitutes closely analogous visual
stimuli for the phonological stimuli of Experiment 1, but this manipulation does not restore the
classic Shepard order.
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⇒ When isomorphic phonological and visual stimuli are used, with similar instructions and
experimental paradigm, pattern structure affects learning similarly in both domains.

5.2 Implications for modelling

(29) If phonological learning isn’t special, then phonologists can exploit the vast body of em-
pirical and theoretical work in psychology on pattern learning, and vice versa.

(30) The results of Experiments 1 and 2 pose a challenge for models of pattern learning that
are designed to reproduce the Shepard hierarchy (e..g., the “rational model” (Anderson, 1991),
ALCOVE (Kruschke, 1992), RULEX (Nosofsky et al., 1994), the Boolean complexity model
(Feldman, 2000), SUSTAIN (Love et al., 2004).)

These models are also architecturally very different from most phonological learning mod-
els.

(31) More promising: The Incremental Maximum Entropy with a Conjunctive Constraint
Schema (IMECCS, Pater and Moreton 2012; Pater 2012) learner is an adaptation to phonology
of the Configural Cue Model of Gluck and Bower (1988b,a) — which was rejected as a model
of non-linguistic category learning precisely because it overestimated the difficulty of Type II.
Main properties:

a. Unbiased conjunctive constraints: One for every conjunction of +, −, or “don’t care”
feature values over the whole stimulus set ([−F2], [+F2 − F3], [+F1 + F2 − F3], . . .]).

b. Error-driven learning: On each training trial, adjust the influence of a constraint up
or down in proportion to its effect on the output error. Algorithms of this sort exist for
Stochastic OT (Boersma, 1997; Boersma and Hayes, 2001; Magri, 2008), Harmonic Gram-
mar (Pater, 2008; Boersma and Pater, 2008), and Maximum Entropy grammar (Jäger,
2007).

(32) IMECCS predicts that after training, classification behavior will be largely determined
by what Gluck and Bower (1988a, 188–189) called “partially valid cues”, i.e., constraints that
apply to a subset of the data and that correctly classify that subset.
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(33) A constraint can be valid by favoring positive stimuli, or by disfavoring negative ones. For
example, Shepard Type V has four valid two-feature constraints, corresponding to the bolded
cube edges in this figure:

These two-feature constraints will turn out to be so important that we will give them a name,
valid edges.

(34) Within each concept, the individual stimuli are supported by different numbers of valid
edges. This illustration shows only how many support each positive stimulus; the negative
stimuli are symmetrical.

(35) On each trial of the experiment, the participant choses between one positive and one
negative stimulus. The total number of valid edges supporting the positive over the negative
stimulus can range from 0 to 6.

(36) Results of Experiments 1 and 2, replotted to show log-odds of a correct response as a
function of how many valid edges favored the positive over the negative stimulus:
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⇒Difficulty of a test pair is determined by the number of valid edges, as predicted by IMECCS.

(Except for Type I in Experiment 2, which is unexpectedly easy — perhaps because participants
can reason explicitly about single features of cakes.)
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5.3 Pattern structure and typology

(37) Typological frequency may be causally related to learning difficulty: The harder something
is to learn, the more likely it is to be lost over time, or changed to something different and easier
(Bach and Harms, 1972).

⇒ Whatever biases phonological learning is subject to, we might see their effects in disparities
between the actual typological frequencies of different pattern types and the frequencies expected
by chance.

(38) The easier Shepard types are also more frequent, compared to a chance model, than the
harder ones in the Mielke (2008)’s P-Base database of “phonologically active classes”. (See
Appendix for explanation.)

I II III IV V VI

[+syll] Orig. 840 216 439 197 133 3
(V) Res. 79 52 322 110 251 8

Ratio 10.63 4.15 1.36 1.79 0.52 0.38

[–syll] Orig. 2469 878 3909 2202 2857 79
(C) Res. 107 100 725 379 604 35

Ratio 23.07 8.78 5.39 5.81 4.73 2.26

(39) This typological sample agrees with the classic Shepard results, and disagrees with the
phonological learning results of Experiment 1! How could this be?

a. P-Base describes natural classes, and Experiment 1 was about phonotactic dependencies,
so they are not “about” the same thing.

b. Lab experiments differ from real L1 or L2 acquisition circumstances in many ways (shorter,
smaller, less semantic,, supervised learning, etc.). Maybe our lab experiments aren’t yet
good enough simulations of natural acquisition.

5.4 Summary

(40) Main point: Phonological learning in the lab is affected by pattern structure in much
the same way as visual learning of analogous stimuli. (I.e., these experiments do not show that
phonological learning is special.)

⇒ Psychological models and experimental results related to non-linguistic category learning
may be applicable as well to phonological learning, and vice versa.

(41) Some questions for the future:

a. But is phonological learning special? There are many other structural effects; do they
differ across domains?

Or can all apparently special properties of phonological learning be traced back to the
unusual structure of the stimulus space (e.g., prosodic and autosegmental relations)?

b. Why does pattern structure seem to affect phonotactic learning differently from natural-
class typological frequency?

c. What about learning in linguistic domains where the features are easier to verbalize, such
as morphology? Should Type II be easier than Type IV? If so, how must models of
morphological learning differ from models of phonological learning?
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A Appendix: The Shepard types in phonological typology

(42) Does formal structure affect typological frequency the same way it affects phonological
learning in the lab? I.e., are easier pattern types also more frequent?

(43) Empirical data from P-base1.93 (Mielke, 2008), which contains 627 Language entries and
9041 classes of Segments. Entries look like this:

Language,Maori

Reference,Harlow, Ray (1996) M?ori. Muenchen: Lincom Europa.

Family,AUSTRONESIAN

Location,New Zealand

Langcode,MAOR

Inventory,Core

p,t,k,f,h,i,u,m,n,?,e,o,?,a,w,

Inventory,Marginal

Trigger,/t/ ? palatalized / __X

Segments,i,u,

Maybe,

a. Standardized minor formatting irregularities in files, but did not change language data.

b. Excluded languages if they contained anything unexpected, such as apparent double oc-
currences of the same segment in inventory statements. This left 620 languages (99%) of
the original database.

c. Excluded classes if their descriptions contained anything unexpected, such as double oc-
currences of same segment. This left 8971 classes (again 99% of the original database).
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(44) Separate analysis for consonants and vowels: The analysis was restricted to classes whose
members all had the same value of [+syllabic]. This eliminated 1262 classes (14.1%), leaving
2034 [+syllabic] and 5682 [–syllabic] classes.

(45) Standard of comparison: Over- or underrepresented relative to what? Suppose we find
that 40% of patterns can be expressed as Type II, and only 20% as Type III. Does that mean
that languages somehow “favor” Type II over Type III?

(46) The comparison we really want to make is between the typology we actually have, and the
one we would expect if learners were unbiased between Shepard classes. That would involve
knowing precisely what other typologically-effective factors would be left if we took out the
learning biases (e.g., the structure and magnitude of phonetic precursors, etc.) — which we
don’t know at all.

Next best thing: We created simulated classes following the procedure used by Mielke (2004,
194): For each of the 2034 [+syllabic] and 5682 [–syllabic] classes in P-Base, a new class of the
same size was created by randomly sampling the [+syllabic] or [–syllabic] sub-inventory with
uniform probability.

(47) Each “phonologically active class” in both the original and the resampled P-Base was
processed as follows to obtain all of the logical structures it was consistent with.

a. We used P-Base’s SPE feature system (Chomsky and Halle, 1968) because it uses the
standard [±high] and [±low] for vowel height.

b. An expression is an assignment of phonetic feature to logical features that allows the
positive class members to be distinguished from the negative ones using only the logical
features. (I.e., no smallest cell contains both a positive and a negative class member.)
Example:

Class 734, Expression 277019, Unami Delaware

[–voice] ∼[–voice]

[–distr] ∼ [–distr] [–distr] ∼ [–distr]

[–cont] t p, tS, k n m

∼[–cont] s S, x, h ; w,j

c. Three-feature expressions were found for 1780 of the 2034 [+syllabic] classes (87.5%) and
3501 of the 5682 [–syllabic] ones (61.5%) in the original P-base. In the resampled one, the
corresponding numbers were 1251/2034 (61.6%) and 1136/5682 (20.0%).

(48) Each expression which had four positive and four negative cells was then processed to see
which Shepard type it fell into. The results are shown in this table.

I II III IV V VI

[+syll] Orig. 334 2 0 1 0 0
(V) Res. 8 4 18 5 33 3

[–syll] Orig. 219 4 7 4 3 0
(C) Res. 0 2 2 0 2 0

a. Distinct classes belonging to at least one Shepard type: [+syll] original 337, resampled
71; [+syll] original 236, resampled 6.

b. Type I is massively overrepresented in the original P-Base compared to the resampled
P-Base.

(49) To get more resolution of the higher types, we investigated “defective” expressions, i.e.,
those where the inventory of the language left some cells empty:
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Class 6, Expression 2850. Sakhalin Ainu

[–voice] ∼[–voice]

[+cons] ∼ [+cons] [+cons] ∼ [+cons]

[–cont] p,t,tS,k P m,n

∼[–cont] s h r w,j

In some cases, the empty cells allowed unambiguous coercion to a Shepard pattern. (E.g., if only
one cell of the 8 is empty, there is only one way to fill it in to create a Shepard pattern.)

(50) Each expression was processed to see what Shepard types it was consistent with. Ex-
pressions which were consistent with multiple Shepard types were discarded. The remaining
expressions were used to count the number of classes that had an expression that was consistent
with each Shepard type. Results:

I II III IV V VI

[+syll] Orig. 840 216 439 197 133 3
(V) Res. 79 52 322 110 251 8

Ratio 10.63 4.15 1.36 1.79 0.52 0.38

[–syll] Orig. 2469 878 3909 2202 2857 79
(C) Res. 107 100 725 379 604 35

Ratio 23.07 8.78 5.39 5.81 4.73 2.26

The original/resampled odds ratios decline as Shepard type increases, for both vowel and con-
sonant classes. Here are the pairwise significant differences for the probability that a class is
from original P-Base, given that it can be represented as a particular Shepard type (2-sample
test with continuity correction, and significance levels corrected for multiple simultaneous com-
parisons):

[+syll] (V) [–syll] (C)

II III IV V VI

I >*** >*** >*** >*** ?

II – >*** >*** >*** ?

III – – <marg. >*** ?

IV – – – >*** ?

V – – – – ?

II III IV V VI

I >*** >*** >*** >*** >***

II – >*** >*** >*** >***

III – – <*** >*** >***

IV – – – >*** >***

V – – – – >marg.

(51) Caution: The natural-language classes are classes of segments, i.e., the relevant features
all occur in the same segment. In the phonological-learning experiment, the relevant features
could occur anywhere in the CV CV stimulus word. Thus, the experiment was not a perfect
analogue of the typological survey.
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