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Abstract

Non-linguistic pattern learning uses distinct implicit and explicit processes, which differ in behavioral

signatures, inductive biases, and proposed model architectures. This study asked whether both processes

are available in phonotactic learning in the lab. Five Internet experiments collected generalisation,

learning curves, response times, and detailed debriefings from 671 valid participants. Implicit and explicit

learners were found in all conditions and experiments. Objective measures of implicit vs. explicit learning

were correlated with introspective self-report. Participants spontaneously discovered and named phonetic

features. These findings contradict the common (usually tacit) assumption that “artificial-language”

participants learn only implicitly. Learning mode also affected inductive bias: Implicit learning improved

performance on family-resemblance patterns relative to biconditionals (if-and-only-if, exclusive-or) in two

experiments. The direction of this effect is unexpected under many current theories of how implicit and

explicit concept learning differ, and is consistent with models of explicit learning which take pattern-

irrelevant features into account.

Keywords: phonotactic learning, phonological learning, concept learning, implicit learning, explicit learn-

ing, inductive bias, artificial language
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1 Introduction

The experimental study of phonological learning has developed rapidly in recent years, providing a new kind

of data about the biases that guide learning. As our knowledge has progressed, it has become clear that

many experiments, results, and models in phonological learning have close parallels in work on non-linguistic

learning (Finley & Badecker 2010; Lai 2012; Moore-Cantwell, Pater, Staubs, Zobel & Sanders 2017; Moreton

2012; Moreton & Pater 2012a,1; Moreton, Pater & Pertsova 2017; Moreton & Pertsova 2016; Pater & Moreton

2012; Pertsova 2012). This creates the opportunity — and the imperative — for systematic comparative

study of human inductive learning across domains.

The present study focuses on one particular comparison. We ask whether phonological learning in the

lab is like non-linguistic learning in the lab in that learners may use either or both of two distinct processes,

one implicit, the other explicit, which are engaged by different learning situations, have different inductive

biases, and have different algorithmic architectures.

This study exploits two under-used sources of information. One is detailed analysis of post-experiment

debriefing questionnaires in order to collect participants’ reports about their own approach to, and experience

of, learning the experimental language, and in order to compare that report with objective measures of

performance. The other is evaluation, not just of end-state performance, but of how performance changes over

time (learning curves), in order to compare it with the predictions of different learning models. Experiments

1 and 2 focus on identifying correlates of implicit vs. explicit learning modes using single-feature assertions

(“Type I” patterns, in the terminology of Shepard, Hovland & Jenkins 1961). Experiments 3, 4, and 5 ask

whether the two modes have different inductive biases, by comparing their success in acquiring two-feature

if-and-only-if (“Type II”) and three-feature family-resemblance (“Type IV”) patterns.

This study goes beyond previous work on phonotactic learning by testing the two-systems hypothesis.

It goes beyond previous work on the two-systems hypothesis in non-linguistic learning by applying that

hypothesis to complex phonological stimuli to facilitate cross-domain comparison. It goes beyond both by

uniting so many indices of learning mode in a single study.

This paper is aimed at two audiences simultaneously. One is phonologists who know about phonological

learning and are interested in how it relates to learning in other domains, or in how participants approach

phonological tasks. The other is cognitive scientists who know about concept learning and are interested in

how it relates to learning phonological patterns, which inhabit a much more complex stimulus space than is

typically studied.
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2 Implicit and explicit concept learning

Studies of inductive learning of featurally-defined non-linguistic patterns (also called “concepts” or “cat-

egories”; e.g., “blue and triangular”) have led many psychologists to hypothesise two concurrent learning

processes, which here we will call the explicit system and the implicit system (Ashby, Alfonso-Reese, Turken

& Waldron, 1998; Kellogg, 1982; Love, 2002; Maddox & Ashby, 2004; Smith, Berg, Cook, Murphy, Crossley,

Boomer, Spiering, Beran, Church, Ashby & Grace, 2012; Smith, Zakrzewski, Herberger, Boomer, Roeder,

Ashby & Church, 2015). The two systems correspond approximately to the familiar notions of reasoning

and intuition. Each is characterised by a set of putatively co-occurring properties. Several variants of this

two-systems hypothesis exist; for critical reviews see Evans (2008); Keren & Schul (2009); Newell, Dunn &

Kalish (2011); Osman (2004).1

The explicit system is hypothesised to be effortful, conscious, and demanding of attention and working

memory. It is proposed to have a “rule-based” architecture, i.e., it can be modelled as serial testing of

verbalizable hypotheses; hence, learning is abrupt (as one hypothesis ousts another; Bower & Trabasso 1964),

open to introspection, and subject to inductive biases which make it better for patterns which depend on

fewer features. Proposals differ as to how the fewer-relevant-features bias arises out of the learning model;

e.g., RULEX (Nosofsky, Palmeri & McKinley, 1994b) serially tests candidate rules in order of increasing

feature count, whereas the mental-model model (Goodwin & Johnson-Laird, 2013) begins with a set of

parochial rules for each instance, which it then progressively amalgamates by detecting and eliminating

irrelevant features. Another conjectured source is a preference for rules that are shorter when expressed in

natural language (Ciborowski & Cole, 1973; Greer, 1979; Maddox, Filoteo & Lauritzen, 2007; Shepard et al.,

1961).2. The process generating the bias will become relevant in a post-hoc analysis (Section 9); until then,

we will simply hypothesise that fewer relevant features mean faster and more accurate explicit learning.

The implicit system, by contrast, is proposed to be effortless, unconscious, and undemanding of attention

or working memory. Architecturally it is proposed to be “cue-based”, i.e., the learning model involves

incremental weight update on an array of property detectors which are functionally analogous to weighted

constraints in linguistic theory (Ashby, Paul & Maddox, 2011; Gluck & Bower, 1988; Nosofsky et al., 1994b;

Rescorla & Wagner, 1972).3 Hence, learning is gradual rather than abrupt, closed to conscious introspection,

1Another approach divides knowledge into declarative vs. procedural, but that is not straightforwardly applicable to phono-
tatic knowledge, which can be implicit without being procedural. We thus focus on the implicit-explicit distinction, as defined
by (e.g.) Lee (1995); Mathews, Buss, Stanley, Blanchard-Fields, Cho & Druhan (1989); Reber (1993); Smith et al. (2015),
rather than procedural vs. declarative.

2There are other proposals which posit a bias towards rules that are shorter or otherwise simpler when stated in a model-
internal rule syntax (e.g., Feldman 2000,0; Goodman, Tenenbaum, Feldman & Griffiths 2008; Shepard et al. 1961; Thaker,
Tenenbaum & Gershman 2017). These proposals leave open whether the model is meant to describe explicit processes, implicit
processes, or a single-system alternative to the two-systems hypothesis, and so are not further pursued in this paper.

3The analogy is looser for exemplar- or cluster-based models, in which stimuli are simultaneously memorised and simplified
by adjusting attentional weights to emphasise some features and de-emphasise others, resulting in a population of complex
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and faster for patterns which are supported by multiple overlapping cues than for those that are supported

by a small number of disjoint cues.

Each system is associated with a distinct syndrome of predicted behavioral effects. Since the explicit

system is conscious and effortful, participants are predicted to be aware of whether they are using it or not.

Since the end product of explicit learning is an explicit rule that governs the learner’s classification responses,

explicit learners should show a tight link between classification performance and ability to accurately verbalise

the target rule. In an experiment where a partly-correct rule is no help, explicit learners are predicted to

fall into two groups at the end of training: those who achieve a high level of classification accuracy and

are able to accurately verbalise the target rule, and those who are near chance and state an inaccurate rule

or no rule. If trial-by-trial responses are collected during training, an abrupt jump from near-chance to

near-perfect performance, and from slow to fast reaction times, might coincide with the discovery of the

correct rule and the participant’s transition from rule-seeking to rule-using.

In the hypothesised implicit system, on the other hand, the product of learning is a set of continuous-

valued weights on an array of property detectors; hence, implicit learning should not facilitate accurate

verbalisation of the target rule. Since the weights are updated incrementally and automatically, and since

responses are smoothly related to the weights, changes in response probabilities and reaction times should

be gradual over time and similar across participants.

The dependence of the explicit system on working memory is hypothesised to bias it in favor of rules

that involve simple relations between a small number of features, such as two-feature biconditionals (if-and-

only-if and exclusive-or patterns, e.g., “either green or square, but not both”), whereas the parallelism of

the implicit system facilitates detection of patterns which are supported by multiple overlapping cues, such

as multi-feature family-resemblance patterns (e.g., “differs by at most one feature value from a small green

square”). Evidence for the occurrence of these symptoms in non-linguistic learning is summarised in Table

1.

Different experimental conditions facilitate the use of one or the other learning mode. Corrective feedback,

instructions to seek a rule, and easily-verbalizable stimulus features elicit more behavioral signatures of

explicit learning, while training without feedback, instructions that do not mention rules, and features that

are hard to verbalise favor implicit learning (Table 2).

Each system is proposed to be domain-general, i.e., to apply to any concept regardless of the real-world

features which define it. The concepts “blue and triangular”, “feverish and sniffly”, “furry and oviparous”,

etc. are all grist for the same two mills. Though the verbalizability of the features, or the perceptual

multi-feature property detectors on which responses are based (Anderson, 1991; Kruschke, 1992; Love, Medin & Gureckis,
2004). The gradual updates apply to both the attentional weights and the association strengths between the exemplars and
the response category.
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Table 1: Behavioral signatures of explicit vs. implicit learning in experiments on non-linguistic learning.

Symptom Explicit Implicit
Report rule
seeking/finding/use

yes no Bruner, Goodnow & Austin
(1956); Ciborowski & Cole
(1972)

Can state correct rule yes no Ciborowski & Cole (1973)

Correctness of stated rule
predicts performance

yes no Lindahl (1964)

Shape of learning curve abrupt gradual Smith, Minda & Washburn
(2004)

Progression of RTs abrupt gradual Haider & Rose (2007)

Distribution of test-phase
performance

bimodal unimodal Kurtz, Levering, Stanton,
Romero & Morris (2013)

Structural bias
IFF/XOR easier than
family-resemblance

IFF/XOR advantage
reduced or reversed

Kurtz et al. (2013); Love
(2002); Rabi & Minda (2016)

Table 2: Conditions favoring explicit vs. implicit learning in experiments on non-linguistic learning.

Favors
Condition Explicit Implicit
Training with feedback no feedback Love (2002)

Instructions urge rule-seeking don’t mention rules Kurtz et al. (2013); Lewandowsky (2011);
Love (2002); Love & Markman (2003)

Intent intentional incidental Love (2002)

Features verbalizable not verbalizable Kurtz et al. (2013); Nosofsky & Palmeri
(1996)

separability of their physical instantiations, might affect learning (Kurtz et al., 2013; Minda, Desroches

& Church, 2008; Nosofsky & Palmeri, 1996; Zettersten & Lupyan, 2020), the processes themselves are

proposed to be general-purpose. It follows that both processes ought to be applicable to language, and

indeed, both implicit and explicit processes have been found to be involved in language learning (Ellis 1994;

for reviews see Lichtman 2013; Rebuschat 2013).4 A widespread view is that child L1 learning is implicit

and domain-specific, while adults learning L2 rely on explicit domain-general problem-solving abilities (Bley-

4By “explicit learning”, we mean here explicit inductive learning, not explicit instructed learning where the language learner
is told outright what the pattern is.
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Vrooman, 1990; DeKeyser, 2003; Paradis, 2004). This is an oversimplification, as there is evidence of implicit

morphosyntactic grammar learning in both naturalistic (non-classroom) L2 acquisition (Green & Hecht, 1992;

Krashen, 1982) and in artificial-language experiments (Lichtman, 2012; Reber, 1993).

There has been little, if any, study contrasting implicit vs. explicit learning of natural first- or second-

language phonotactics.5 Studies of phonological learning in artificial languages are mainly aimed at explain-

ing natural-language typology, and therefore assume — usually tacitly — that all participants use a single

implicit inductive learning process, identical to the one that underpins natural language acquisition and

shapes natural-language typology. Criticisms of “artificial-language” methodology as contaminated by ex-

plicit learning (e.g., Zhang & Lai 2010) have not presented evidence that it actually is so contaminated.

Experimenters may design their experiments to minimise explicit learning (e.g., Do, Zsiga & Havenhill 2016;

Glewwe 2019), or exclude data from participants who correctly verbalise the pattern (e.g., Chen 2020; Lin

2023; Moreton 2012; Zellers, Post & Williams 2011), but, with some recent exceptions (Chen 2021; Kimper

2016; Moreton & Pertsova 2016; Moreton, Prickett, Pertsova, Fennell, Pater & Sanders 2021), they rarely

analyze implicit and explicit learners separately, nor distinguish wholly implicit learners from failed explicit

learners.

Lack of knowledge about the learning-mode variety of phonological learning is an obstacle to progress.

Despite their growing importance to phonological theory, we do not know what artificial-language experi-

ments are “about”. Are participants really all applying the same processes as each other? Are they applying

the same processes as natural L1 or L2 learners? Are there experimental manipulations that encourage the

kind of learning the experimenters want to study? Are there ways to distinguish different kinds of learners

in the analysis? Do differences in how participants learn lead to differences in what kinds of pattern they

learn better?

This study asks whether the inductive learning of phonotactics in the lab is served by implicit and explicit

processes like the ones proposed for non-linguistic inductive concept learning. The research strategy is simple:

using phonological patterns rather than non-linguistic ones, to vary the conditions in Table 2, observe the

effects on the symptoms in Table 1, and compare the results to the predictions of the two-system model.

2.1 Approaches to implicit vs. explicit learning in related areas

This study, motivated by the parallels between the concept-learning literature in psychology and the phonotactic-

learning literature in phonology, focuses on the empirical area where those parallels are strongest, namely,

experiments in which adult participants classify stimuli on the basis of a featurally-defined pattern. There

5There is a sizable literature on instructed vs. naturalistic acquisition of second-language phonetics, reviewed in Thomson
& Derwing (2015).
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are two other neighboring areas in which debate is ongoing as to the relative contributions of implicit and

explicit knowledge, and which have been studied in connection with non-linguistic analogues.

One is the learning of phonologically unpatterned wordlike chunks from speech-stream segmentation

(“statistical learning”, e.g., Saffran, Newport & Aslin 1996). Participants are exposed to an uninterrupted

stream of concatenated pseudo-words sampled with repetition from a fixed set, and are then tested on their

ability to recognise the pseudo-words in isolation and distinguish them from foils. The statistical dependencies

that make it possible to parse out the pseudo-words are phonologically arbitrary dependencies between

specific syllables or segments (e.g., Newport & Aslin 2004). Here, both implicit and explicit processes seem

to contribute something non-negligible (Batterink, Paller & Reber, 2019; Batterink, Reber, Neville & Paller,

2015). Analogous visual experiments have found predominantly implicit learning (Kim, Seitz, Feenstra &

Shams, 2009), but with some role for deliberate attention (Turk-Browne, Isola, Scholl & Treat, 2008).

Another approach involves speech errors occurring during speeded production of sequences of syllables

(Dell, Adams & Meyer, 2000). The oft-replicated finding is that a consonant which is restricted by the

experimental pattern to a specific syllable position (onset vs. coda) stays in that position when moved to

a different syllable by an error more often than a consonant whose position is not so restricted (Anderson

& Dell, 2018). Participants usually show signs of implicit learning, such as insensitivity to instructions that

reveal the pattern and inability to report it afterwards (reviewed in Dell, Kelley, Hwang & Bian 2021), but

that is not always the case (Taylor & Houghton, 2005, Experiment 1). Recently, Smalle, Muylle, Szmalec &

Duyck (2017) and Muylle, Smalle & Hartsuiker (2021) have found that children’s and older adults’ errors on

position-restricted consonants are like those of younger adults, but that, unlike younger adults, children and

older adults have no tendency to preserve the syllable positions of unrestricted consonants in errors. Muylle

et al. (2021) speculate that this might be because younger adults have better explicit cognition than the other

two groups, whereas implicit learning ability is constant across the lifespan. In button-pressing analogues

in which fingers played the role of consonants and thumbs those of vowels, it was found that, although

errors respected position in the syllable-analogues as in the language versions, there was no tendency for

unrestricted consonant-analogues to preserve position (Anderson & Dell, 2018; Rebei, Anderson & Dell,

2019) — i.e., younger adults in the button-pressing task behaved like children and older adults in the speech

task. If Muylle et al. (2021)’s speculation is correct, that could mean that the button-pushing task is entirely

implicit, whereas the speech task engages some explicit processing in younger adults.

How concept learning, statistical learning, and production learning are related to each other and to

natural first- or second language acquisition will be a difficult knot to unpick. One approach would be to

compare how the same pattern is learned across all three experimental paradigms, and that can hardly be

done without clarifying the role of implicit and explicit processes in each one.
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3 Experiment 1

In Experiment 1, the conditions in Table 2 were varied to see if they had the effects in Table 1.6 The

Implicit-Promoting condition was based on a common paradigm in which participants are familiarised us-

ing only pattern-conforming instances, then tested on their ability to choose a novel pattern-conforming

item when paired with a non-conforming foil (e.g., Carpenter 2006,1,1; Gerken, Quam & Goffman 2019;

Greenwood 2016; Kuo 2009; Lai 2015; Moreton 2008,1; Moreton et al. 2017; Skoruppa & Peperkamp 2011).

The Explicit-Promoting condition differed in that training trials consisted of choosing the conforming mem-

ber of a conforming-non-conforming pair, a condition which encourages explicit learning in non-linguistic

experiments because it asks for explicit judgements and provides explicit corrective feedback (see Section 2).

In the above-cited experiments corresponding to the Implicit-Promoting condition (Carpenter 2006, etc.),

the familiarisation task was explained to participants as listening to “words” in a “language”, and the test

task as distinguishing novel words of the language from nonwords. Using that task here would have meant

familiarizing our Explicit-Promoting participants by training them to choose words over nonwords, a task

which has no analogue in natural language learning. To improve ecological validity in the Explicit-Promoting

condition, participants in both conditions of Experiment 1 were instead told that they would be learning to

distinguish words of the target gender from words of another gender. Many natural languages assign gender

at least partly on the basis of arbitrary phonological properties (Corbett, 1991, 51–62), and guessing the

gender of a new word is something that speakers of such languages must sometimes do in real life, making

use of phonological cues among others (Franco, Zenner & Speelman, 2018; Onysko, Callies & Ogiermann,

2013; Zubin & Köpcke, 1984). Each participant’s “language” assigned nouns feminine or masculine gender

based on a visual or phonological feature chosen randomly from a larger set. Participants were trained,

tested, and then given a post-experiment debriefing questionnaire.

3.1 Methods

3.1.1 Stimuli

The audio stimuli (fictitious nouns) were American English nonwords with the prosodic shapes [(@C)V C@C]

and [V C@C(@C)]. Main stress fell on the first or second syllable; other syllables’ vowels were reduced to [@].

7 The stressed vowel was one of [i I e E u U o O]. The consonants were one of [p b t d f v s z]. The schema is

6Parts of this section were previously presented as Experiment 1 of Moreton & Pertsova 2016.
7Vowel-initial words were used for forward compatibility with other planned experiments. Similar patterns are attested

in a number of natural languages; e.g., in Urama (Papua New Guinea; Trans-New Guinea) all verb roots begin with a vowel
(Brown, 2009; Brown, Muir, Craig & Anea, 2016). In E. do (also called Bini) and its relative Urhobo (both Nigeria; Niger-Congo,

Edoid), all nouns, or nearly all, begin with a vowel (O. mo.ruyi, 1986; Kelly, 1969). In Èwùlù (Nigeria; Niger-Congo, Igboid),
all noun stems begin either with a vowel or with a syllabic nasal (Utulu, 2020). In Arrernde (Arrernte, Aranda; Australia,
Pama-Nyungan), all words are vowel-initial at the surface level (Breen & Pensalfini, 1999).
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shown in Table 3. Examples are shown in Figure 1.

Consonants Stressed vowels Prosodic shapes
Lab Cor

voiced − + − +

−cont p b t d
+cont f v s z

−back +back
tense + − + −
+high i I u U
−high e E o O

Disyllabic Trisyllabic

σ́ = σ1 V C@C V C@C@C
σ́ = σ2 @CV C @CV C@C

Table 3: Schema used to construct the auditory nonword stimuli for all experiments.

"u d @ t @ "f i v @ f

Figure 1: Examples of audio stimuli, shown in Praat (Boersma & Weenink, 2021). Dimensions: 2.21 s ×
±0.93 uncalibrated units (waveform) or 5000 Hz (spectrogram).

Six phonological variables were chosen based on the authors’ expectations that each would be individually

highly salient, i.e., would result in high learning performance in a Type I pattern. Three were chosen with

the expectation that they would be easy for linguistically-näıve participants to verbalise: two vs. three

syllables, first- vs. second-syllable stress, all consonants different vs. all consonants identical. The other

three were chosen with the expectation that they would be hard to verbalise: stressed vowel is front (and

unrounded) vs. stressed vowel is back (and rounded), all consonants are fricatives vs. all consonants are

stops, and all consonants are labial vs. all consonants are coronal. The reason for making all consonants

share the property was to make the rule findable regardless of which consonant position or positions the

participant happened to focus their attention on. The six variables were crossed to create 64 cells, each of

which was filled with 8 randomly-generated nonwords to create a pool of 512 nonwords. We will refer to

these variables as “features” henceforth, using the word in its everyday sense rather than in the technical

sense of an element in a theory of distinctive features (Jakobson, Fant & Halle, 1952).

Each stimulus was recorded in isolation by a male native speaker of American English from the Upper

Midwest at a 44.1 kHz sampling rate. Using Praat (Boersma & Weenink, 2013), they were high-pass

filtered with a 10-Hz rolloff at 100 Hz to remove low-frequency noise, and normalised to have the same peak

amplitude. The resulting high-resolution WAV-format files were lossily compressed to MP3 and Ogg Vorbis
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format for use in the actual experiment. The pictures were collected from public-domain sources found on

the World Wide Web. Each depicted a familiar object on a white background.

3.1.2 Participants and procedure

Participants were recruited for a study on learning grammatical gender in an artificial language using Amazon

Mechanical Turk (Sprouse, 2011). A total of 211 participants completed the experiment. Of these, 20 were

excluded from analysis (5 reported a non-English L1, 7 reported taking written notes, 6 reported choosing

test-phase responses that were maximally unlike what they were trained on, 2 fell below the minimum

performance criterion of at least 10 correct answers out of 32 in the test phase,8 leaving 191 valid participants.

In addition to the six phonological-feature conditions described above, there were also three visual-feature

conditions which will not be discussed here (but see Pertsova & Becker 2020 for some discussion). That left

137 valid participants in the phonological conditions (63 Explicit-Promoting and 74 Implicit-Promoting).

No participant, in this or any other experiment, participated in more than one of the experiments reported

in this paper.9

The experiment was preceded by a sound check, in which potential participants were asked to listen to

a single word and type it. Those who were unable to hear the audio were asked not to participate further.

Participants were then randomly assigned to one of 24 groups defined by crossing Training Group with

Critical Feature and Target Gender.

A unique “language” was randomly generated for each participant, consisting of 128 word-picture pairs,

randomly divided into 32 conforming and 32 non-conforming items for the training phase, and another 32

and 32 for the test phase. Grammatical gender was explained as follows:

This artificial language is like Spanish or French in that it has grammatical gender : All nouns

are grammatically either feminine or masculine, even if they refer to things like clouds or sidewalks

that have no biological sex.

Participants in the Implicit-Promoting group were instructed that all of the words they were to learn

would belong to the Target Gender. On each training trial, the participant saw a picture, captioned with

its English name, with a button below it (Figure 2, left panel). Mousing over the button played the correct

word for that picture in the artificial “language”. Clicking the button triggered the next trial after a 250-ms

8The criterion was meant to exclude participants who misunderstood the task and systematically attempted to choose the
non-conforming item. The reason for setting the criterion at 10 incorrect answers out of 32 is that a participant who scored at
that level or below was significantly below chance performance (two-sided binomial 95% confidence interval).

9Mechanical Turk batch sizes for each experiment were chosen with the aim of having at least 12 valid participants for
each unique combination of Type (I, II, and/or IV, depending on experiment), Training Condition (Implicit-Promoting or
Explicit-Promoting), and assignment of physical dimensions to logical dimensions (6 levels for Experiment 1, 3 for the other
experiments). There were 54 such cells of this sort across the 5 experiments. Actual yield per cell varied, with a mean of 11.2
and a standard deviation of 3.8.
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delay. All 32 pattern-conforming stimuli were presented in random order, then again in a different random

order, and so on until they had been presented four times over. The random order was constrained to

consist of four-trial blocks such that each trial within a block came from a different one of the four bins that

corresponded to pattern-conforming feature values.

Participants in the Explicit-Promoting group were instructed that they would learn to tell whether a word

belonged to the Target Gender by trial and error; and there were systematic differences between the feminine

and masculine words which were reliable guides to the right answer. On each training trial, participants

saw two pictures, each with a button below it which played the correct word when moused over (Figure 2,

right panel). The task was to choose the picture-word pair that had the Target Gender. The response was

followed, after 500 ms, by feedback. For a correct response this was the sound of a desk bell. One second

after the onset of the bell, the correct response was played again, and two seconds after the onset of that

stimulus, the next trial began. Following an incorrect response, the feedback was a sad two-note sequence

played on a trumpet, after which the software waited for the participant to click on the correct button before

proceeding to the next trial. After all 32 conforming-nonconforming pairs had been presented, they were

re-paired, reordered, and re-presented, until they had been presented four times (“timed out”), or until the

participant had responded 100% correctly on four consecutive 4-trial blocks (“reached criterion”).

Figure 2: Participant view of a trial in Experiment 1. Left panel: Training phase, Implicit-Promoting
condition. Right panel: Training phase, Explicit-Promoting condition, and test phase, both conditions.

Participants in both conditions were instructed to pronounce the audio stimuli aloud before responding.

A timestamp was recorded by the server when a trial was transmitted to the participant, and another when

the server was notified that the trial had ended, using the time function in the Time::HiRes module in

Perl (Wegscheid, Schertler & Hietaniemi, 2015). Since response times were measured at the server, they
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1. How did you approach the learning task (the first part of the experiment? Please choose all that apply:
2 Went by intuition or gut feeling.
2 Tried to memorize the words.
2 Tried to find a rule or pattern.
2 Took notes
2. Please describe what you did in as much detail as possible. If you looked for a rule, what rules did you
try?

3. How did you approach the test (the second part of the experiment)? Please choose all that apply:
2 Chose words that sounded similar to the words I’d studied.
2 Chose words that sounded different from the words I’d studied.
2 Chose words that fit a rule or pattern.
4. Again, please describe what you did in as much detail as you can. If you used a rule, what was it?

5. What percent of the test questions do you think you got right?
6. Did you have an ”Aha!” moment, where you suddenly realized what the pattern was? (TRUE/FALSE)
7. If so, please describe the “aha!” moment. When did it happen? What was it you suddenly realized?

Table 4: Post-experiment debriefing questions (1–5: all experiments; 6 and 7: Experiments 2 and 5).

include transmission time to and from the participant’s computer, as well as the time required to render the

page and play the sound files, which add variability to the durations (Høiland-Jørgensen, Ahlgren, Hurtig &

Brunstrom, 2016).

The last training trial was followed by the test-phase instructions, identical for both Training Groups.

The procedure was identical to the training phase of the Explicit-Promoting group, except that the novel

pattern-conforming and non-conforming test items were used, and there was no feedback; either response

was followed, after 250 ms, by the next trial. Each of 32 conforming-nonconforming test pairs was presented

once.

The experiment was followed by a debriefing questionnaire. In addition to questions about age, gender,

and linguistic background, the questionnaire asked the participant to introspect about the learning process

and the outcome of learning. The questions asked are shown in Table 4.

3.1.3 Questionnaire coding

Self-report can be used in many different ways to assess implicit vs. explicit learning (Tunney & Shanks,

2003), but there is no way to cleanly divide participants into one group that used exclusively implicit

processes, and another that used exclusively explicit ones, because of the possibility of inaccurate self-report

and the probability that many participants use some of each. We can only sort participants into more-

and less-explicit groups, i.e., groups that are likely to contain a higher or lower proportion of people who

relied more on explicit or more on implicit processes. Questionnaire responses were coded according to the
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following criteria:

Feature stating : Did any of the answers mention any of the critical phonological features of the target rule

by description (rather than by, e.g., listing letters)?

Rule stating : Did any of the answers state an explicit property of the audio or visual stimulus, and say or

imply that the participant’s training or test responses were guided by it at any point in the experiment?

(Rules that the participant said they tried and abandoned were included when scoring rule-stating.)

Rule correctness: Did the participant report the correct rule? If not, did they report an approximation, a

rule that was more than 50% correct? (Rules that the participant said they tried and abandoned were

not included in scoring rule correctness.)

Listing : Did any of the answers list sounds, syllables, or letters?

The answers to the free-response questions (Questions 2, 4, and 7) were merged into a single answer for

scoring. This was necessary because participants often answered each question, at least partly, in the other

question’s response box.

Participants’ answers to the free-response questions were coded by two of the experimenters using software

custom written by Josh Fennell. To minimise criterion drift across experiments, the questionnaires from all

of the experiments reported in this paper were coded together, with individual participants’ questionnaires

occurring in random order so that questionnaires from different experiments were intermixed. Since the only

unstressed vowel was schwa, there was no principled distinction between specifying stress location in terms

of where schwa was found, and specifying it in by listing the vowel sounds that appeared in a particular

position; hence, both response types were arbitrarily scored as feature-stating rather than letter-listing.

Cohen’s κ statistic for inter-rater reliability was calculated using the kappa2 function of the irr package in

R (Gamer, Lemon, Fellows & Singh, 2019). All of the κs were above 0.8, a level which is typically regarded

as indicating high reliability (Cohen, 1960; Landis & Koch, 1977; McHugh, 2012; Munoz & Bangdiwala,

1997).

3.2 Hypotheses and planned analyses

If the explicit system is in fact open to conscious introspection and under voluntary control, then ques-

tionnaire responses about the use of that system should reflect performance of its users in the training and

testing phases with better-than-chance accuracy. In order to make concrete predictions, participants were

classified based on their scored questionnaire responses according to the following schema:

14



Rule-Seeker : Checked box “Tried to find a rule or pattern” with reference to the training phase.

Rule-Stater : In at least one of their free-response responses, stated a rule. Subdivided into Correct Rule-

Staters, Approximately-Correct Rule-Staters, and Incorrect Rule-Staters as scored (see Section 3.1.3).

Memoriser : Checked box “Tried to memorise the words” with reference to the training phase.

Intuiter : Checked box “Went by intuition or gut feeling” with reference to the training phase.

In training conditions where feedback was given, the training phase yields a learning curve, on the basis

of which participants were additionally classified according to whether they met the stopping criterion:

Solver : In a condition with feedback, someone who met criterion (4 consecutive correct 4-trial blocks).

A participant who reported using multiple approaches was coded TRUE for each of the relevant categories.

If use of the explicit vs. implicit system is facilitated by the same factors as in visual pattern learning,

then more Explicit-Promoting than Implicit-Promoting participants should be Rule-Seekers and Rule-Staters

(Hypothesis 1 ).

If a participant states a correct explicit rule, that rule is likely to be the source of their test-phase

responses: Correct Rule-Staters should perform near 100%. Participants who did not state a correct rule

— the Non-Staters, Incorrect Staters, and Approximate Staters — may be a more heterogeneous group.

Their responses could be based on an approximately-correct explicit rule, an outright wrong explicit rule,

an implicitly-learned intuition about the pattern, similarity to memorised training stimuli, or even a correct

explicit rule that they omitted to state on the questionnaire. Hence, Non-Staters should show a wide

distribution of somewhat above-chance performance, and Correct Staters should outperform Approximate

Staters (Hypothesis 2 ).

By comparing Solvers with each other, we can compare participants who achieved high performance by

different routes to see if differences in the learning curve correspond to differences in self-report. A participant

who becomes a Solver by serial hypothesis-testing alone would show near-chance performance until finding

the correct rule, whereupon performance would improve to near-perfection and stay there. Once the correct

rule is found, the participant can respond to a trial after hearing just one of the two stimuli. Hence, among

Solvers, Correct Staters are predicted to be more likely than other Solvers to show abrupt improvement in

two-alternative forced-choice performance (Hypothesis 3 ) and a decrease in response times (Hypothesis 4 )

after the last error.

3.3 Results
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3.3.1 Questionnaire responses

Participants reported behaving in ways that have received little or no attention in the artificial-phonology-

learning literature to date. To illustrate the contrast between what is often assumed to occur in a phonological-

learning experiment and what our participants reported, we quote their own words before proceeding to a

quantitative analysis.

Näıve participants, i.e., those who reported not having studied linguistics, were able to discover phonetic

properties and invent ways to verbalise them, even for some properties which often take time and effort

for Linguistics 101 students to grasp. Out of the 137 valid participants in this experiment, 36 (26%) did

this. For example, the continuancy distinction (fricatives vs. stops) was intended by the experimenters to

be non-verbalizable, but some participants recognised the feature and coined their own terminology:

The feminine words used harsher consonant sounds and it was pretty clear from the beginning.

Consonants p,d,t,etc were feminine whereas z,s,v, etc. sounds were masculine. (Participant fUlgjM,

Explicit-Promoting, fricatives/stops)

The words that ended more sharply seemed masculine than the feminine words. I followed the

same rules as the first round here and looked for the same sounds. (Participant Explicit-Promoting,

pzyaXQ, fricatives/stops)

The experimenters likewise intended place of articulation (labial vs. coronal) to be non-verbalizable, but one

participant reported:

The words had consonant sounds that were formed using the lips and front of the mouth. All of

the studied words used “v,” “p,” “b,” and “f” sounds, which are made with the lips and front of the

mouth, so I chose the words that used those sounds (Participant XABNEW, Implicit-Promoting,

labial/coronal)

Many participants verbalised a rule in the form of a list of letters, e.g.,

I found that feminine words did not usually end in a t, z, or s. It usually ended with either an o

or a u as the second to last letter, with usually an f or p as the last letter. (Participant PjMFZY,

Explicit-Promoting, labial/coronal)

I noticed that most of the words were pronounced starting with an o or a sound and often had a

u sound somewhere in it. (Participant OUzBea, Implicit-Promoting, front/back)

All words that I chose started with the “ah” sound. (Participant Mdantx, Implicit-Promoting,

initial/second-syllable stress)
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Then, I noticed that when the second syllable was stressed I got the bell. (Participant SyzluI,

Explicit-Promoting, initial/second-syllable stress)

Instead of three easily-verbalizable and three non-verbalizable features, as intended, the experiment

turned out to have used one feature that was frequently verbalised as a feature (two vs. three syllables),

two features that were frequently verbalised as letter lists (fricatives vs. stops and labials vs. coronals), one

feature that was frequently verbalised ambiguously as a feature or a letter (initial vs. second-syllable stress;

see Section 3.1.3), and two that were rarely verbalised (same vs. different consonants and front vs. back

vowel). Summary statistics are shown in Table 5.

Mentioned feature Listed letters Either
Intended verbalizable:
Two vs. three syllables 0.59 0.00 0.59
Initial vs. second-syllable stress — — 0.62
All consonants identical vs. different 0.21 0.07 0.21

Intended non-verbalizable:
Stressed vowel front vs. back 0.00 0.29 0.29
All consonants fricatives vs. stops 0.25 0.44 0.56
All consonants labial vs. coronal 0.08 0.62 0.62

Table 5: Empirical verbalizability of features in Experiment 1: proportion of all Rule-Seekers who men-
tioned the critical feature or listed letters in a correct or approximately-correct rule. (Every correct or
approximately-correct rule either mentioned the feature, listed letters, or both; therefore, the “Either” col-
umn is also the proportion of Correct or Approximate Rule-Staters among the Rule-Seekers.) Report of
stress location did not distinguish description from listing; see text.

Thus, despite experimenters’ intentions, näıve participants may reason explicitly about phonetic proper-

ties, which they can discover during the experiment and for which they can invent phonetically non-arbitrary

names to facilitate explicit reasoning. Additionally, even when the phonological stimuli are audio-only, as

these were, participants may be mentally spelling them to facilitate explicit reasoning.

Nor do all participants report doing the experiment the same way (Table 6). Participants described a

variety of approaches to the learning problem, and it often happened that an individual participant reported

switching approaches during the experiment. Some examples follow.

Intuiter Non-Intuiter
Memoriser Non-Memoriser Memoriser Non-Memoriser

Seeker 7 15 16 57
Non-Seeker 3 14 24 1

Table 6: Self-reported learning strategies (check-box responses), Experiment 1.

Pure intuition:
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I went by mostly similar sounds or letters used. No rules followed here just gut feeling.

(Participant SaUkjT, Implicit-Promoting same/different consonants)

Pure sequential hypothesis testing :

I considered different aspects of each word, such as number of syllables, the sounds of syllables,

and what letters were used, and finally determined that for masculine words the last three letters

were a consonant, a vowel, and the same consonant repeated, whereas with feminine words

the last three letters were a consonant, a vowel, and then a different consonant. (Participant

tIPXWj, Explicit-Promoting, all consonants same/different)

Intuition and sequential hypothesis testing :

I started mainly by intuition while trying to find patterns in apparent suffixes and prefixes. I

also tried to find other patterns until I realized that the number of syllables appeared to denote

the gender. I followed the pattern where two syllables equaled feminine and more than two

equaled male. (Participant YnlqOd, Explicit-Promoting, two/three syllables)

Intuition and rule of unknown origin:

I tried vowel placement and sound but I don’t know if thats how it works. So I went with

my gut mostly. It seems the masculine is usually longer and sometimes with a long vowel in the

middle with a lot of emphasis. (Participant RvWrHh, Explicit-Promoting, two/three syllables

condition)

Memorisation:

I just tried to memorize the words by saying them out loud. Based on the words I was

able to learn, I went off of those and chose words that sounded similar. (Participant DRrbim,

Implicit-Promoting, labial/coronal)

Tried rule-seeking but switched to memorisation:

In the end, I just gave up and memorized which words were feminine and which weren’t. I

tried to find a pattern, for example, if words ended with a certain consonant, or if there were

shorter or longer vowels and similar stuff, but honestly, there were no patterns I could discern. I

didn’t take any notes. I wasn’t sure if you were allowed to. That might’ve been a good idea. I

just tried to remember which words sounded feminine, even though I did not recognize a pattern.

(Participant gbBIqh, Explicit-Promoting, same/different consonants)
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Focused attention on specific parts of the word :

I first listened to the ending of the words to see if there was a pattern. Then, I noticed

that when the second syllable was stressed I got the bell. The second syllable was stressed.

(Participant SyzluI, Explicit-Promoting, first/second syllable stress)

The reports differ from one participant to the next, even within a single condition, giving at least an initial

impression that participants are sampled from a very mixed distribution. How seriously that impression

is to be taken depends of course on how accurate self-report is, a question to which we now turn in the

quantitative analysis. Self-report of cognitive processes is often viewed skeptically (Berry & Broadbent,

1984; Nisbett & Wilson, 1977), but it is often corroborated by objective behavioral measures, especially in

intentional problem-solving tasks (Ericsson & Simon, 1980; Kellogg, 1982; Morris, 1981; White, 1988). One

goal of this experiment series is to test the validity of self-report in phonological learning. The analysis, and

the rest of this paper, will focus on rule-seeking and rule-stating, the bases of our hypotheses, rather than

on memorisation.

3.3.2 Hypothesis 1: Rule-seeking and rule-stating are influenced (but not wholly determined)

by instructions, feedback, and/or intention to learn

Results from all participants are plotted in Figure 3. Participants in the Explicit-Promoting condition were

indeed significantly more likely than those in the Implicit-Promoting condition to be Rule-Seekers and Rule-

Staters (p = 0.0001643 and 0.01053 respectively by Fisher’s exact test, two-sided). A couple of Incorrect

Staters performed well on the generalisation test, and so must have been basing their responses on something

other than the incorrect rule they stated, perhaps intuition.10

3.3.3 Hypothesis 2: Stating a correct rule predicts better generalisation performance

Figure 3 also shows that participants tend to fall into two groups: Correct or Approximately-Correct Staters,

who perform nearly perfectly on the generalisation test (black and gray circles), and Non-Staters or Incor-

rect Staters (empty and crossed circles), whose performance is widely distributed. In fact, most Correct

or Approximately-Correct Staters (35/52) gave a pattern-conforming response on every single one of the

32 test trials, and most of those who gave 100% pattern-conforming responses (35/48) were Correct or

Approximately-Correct Staters.

10As noted above, participants were assigned to the Stater category on the basis of their answer to the question “If you looked
for a rule, what rules did you try?”. Hence, the Incorrect Staters category also includes those who stated a rule that they said
they tried and rejected.
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Figure 3: Test-phase performance as a function of training condition, rule-seeking, and rule-stating, Experi-
ment 1. Plotting symbols: Black circle = Correct Stater, gray circle = Approximate Stater, crossed circle =
Incorrect Stater, white circle = Non-Stater. A horizontal line segment marks the chance performance level
of 50%.

The effect of rule discovery on generalisation performance was quantified using complex survey design

logistic regression with a two-stage sampling mode. This procedure, also known as a “population average

model” or “sampler’s model”, treats each participant in the experiment as a cluster in a survey (e.g., a

sample of size 100 voters in each U.S. State), and each 2AFC trial as a participant in the survey (e.g., an

individual voter, responding to a single yes/no survey question). Complex survey design logistic regression is

an alternative way of taking into account within-participant dependency (Bieler & Williams, 1995; Lumley

& Scott, 2017; Williams, 2000) while avoiding convergence problems encountered when trying to fit mixed-

effects logistic regression models to individual 2AFC responses. (The authors are indebted to Chris Wiesen

of the Odum Institute for Social Science Research at the University of North Carolina, Chapel Hill, for

suggesting this method.) Complex survey design logistic regression was used for all repeated-measures data

in this article. The models were fit using the R package survey (Lumley, 2004,1; Lumley & Scott, 2017)

with Training Group (0 = Explicit-Promoting, 1 = Implicit-Promoting), Rule Correctness (1 for Correct

Staters, 0.5 for Approximate Staters, and 0 for others), and their interaction as fixed effects. The dependent

variable was Correctness of each trial response (1 = pattern-conforming, 0 = non-conforming). The fitted

model is shown in Table 7. The significant and positive intercept term means that even Incorrect Staters

and Non-Staters performed above chance in the Explicit-Promoting condition, and the significantly positive

coefficient for Implicit-Promoting means that they performed better in the Implicit-Promoting condition.
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The large, highly significant coefficient for Rule Correctness, and the near-zero interaction term, mean that

Correct and Approximate Staters did perform much better than Incorrect Staters and Non-Staters regardless

of the training condition.

Coefficient Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.6552 0.1617 4.052 8.59e-05 ***
Implicit-Promoting 0.4392 0.2185 2.010 0.0465 *
Rule Correctness 3.0614 0.4896 6.252 5.11e-09 ***
Implicit-Promoting × Rule Correctness −0.3707 0.7327 -0.506 0.6137

Table 7: Summary of complex survey design logistic-regression model for pattern-conformity of
generalisation-test responses, Experiment 1 (4384 responses from 137 participants).

3.3.4 Hypotheses 3 and 4: Correct rule-stating is associated with more-abrupt learning curves

and with response-time acceleration after the last error

The Explicit-Promoting condition yielded a learning curve for each participant, showing performance (pro-

portion conforming responses) as a function of trial number. The curves for the Solvers (those who met the

criterion of 4 consecutive correct 4-trial blocks before the end of the training phase) are shown in Figure

4. Performance in the 16-trial window preceding the last error was significantly lower for Correct and Ap-

proximate Staters than for other Solvers, as shown by the negative coefficient for Rule Correctness in the

model of Table 8 (fitted using svyglm, as above, because of the repeated measure on Participants). This is as

predicted by Hypothesis 3: Both the Correct Staters and the others learned the pattern to the same ultimate

criterion level of 100%, but the transition was more abrupt (started from a lower baseline) for participants

who stated a correct or partly-correct rule. Figure 4 also illustrates how near-perfect training performance

in the test phase collapses when the participant does not state a correct rule (Hypothesis 2, above).

Hypothesis 4 was tested using trial-duration data from correct responses by Solvers in the Explicit-

promoting condition. Only responses which occurred within sixteen trials before or after the last error were

analyzed. Since response times on the very first trial of the experiment tended to be two or three times as

long as on the second and subsequent trials, the very first trial was dropped if it occurred within the sixteen-

Coefficient Estimate Std. Error t value Pr > |t|
(Intercept) 1.4514 0.1342 10.818 1.39e− 13 ***
Rule Correctness −0.9662 0.2557 −3.779 0.000502 ***

Table 8: Summary of the complex survey design logistic-regression model for pattern-conformity of training-
phase responses in the 16-trial window preceding the last error before the 16-trial criterion run, for Solvers
in the Explicit-Promoting condition of Experiment 1. (575 responses from 43 participants, excluding 5 more
participants who either never made an error, or who only made an error on their first trial.)
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Figure 4: Learning curves for Solvers in the Explicit-Promoting condition of Experiment 1, aligned to the
last training error. (Since they are Solvers, the last training error precedes a 4-block sequence of correct
responses.) Dashed lines are individuals, solid line is the mean across participants. Each point is the average
of a block of four consecutive trials.

trial radius. Durations of less than 4 seconds or more than 30 seconds were excluded, which eliminated the

most extreme 10% of responses. A general linear model was then fit using the same complex survey design

used in other repeated-measures data in this paper via the R method svyglm, with log trial duration as

the dependent variable. The critical predictors were Preceding (1 for trials preceding the last error, 0 for

trials following it), Rule Correctness (1 for Correct Staters, 0.5 for Approximate Staters, else 0), and their

interaction. Since Correct Staters’ last error tended to occur earlier than other Staters’, a nuisance variable,

log (trial number -1), was included to model out the overall shortening of response times after the (dropped)

very first trial as the experiment progressed.11

Coefficient Estimate Std. Error t value Pr > |t|
(Intercept) 2.43042 0.12625 19.251 < 2e− 16 ***
Preceding -0.02132 0.02052 -1.039 0.30483
Rule Correctness 0.03184 0.06427 0.495 0.62305
Preceding × Rule Correctness 0.13217 0.05622 2.351 0.02375 *
log(Trial Number - 1) -0.11067 0.02888 -3.831 0.00044 ***

Table 9: Summary of the complex survey design general linear model for log trial duration, correct responses
from Solvers in the Explicit-Promoting condition within 16 trials of their last error. (1118 observations from
45 participants).

11Trial duration and trial number were natural-log-transformed to facilitate controlling for the acceleration of response times
that is typically observed due to practice (Newell & Rosenbloom, 1981). The individual Solvers’ log-trial-duration by log-trial-
number plots were informally inspected to confirm that the transformation resulted in an approximately linear relation.
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The fitted model is shown in Table 7. The intercept of about 2.5 and significant Log trial number

coefficient mean that for Solvers who were not Correct or Approximate Staters, the time required to make

a correct response shortened in a decelerating curve from about 12s on Trial 2 to a little less than 7s by

Trial 128. The small, non-significant negative coefficient for Preceding means that for these participants,

the 16 trials following the last error were not faster than those preceding it; if anything, they were a little

slower, once the overall effect of Log trial number is corrected for. The small and nonsignificant effect of

Rule Correctness means that when the other factors are controlled for, correctness of the stated rule had

no significant effect on response time. Finally, the significant positive coefficient for the interaction between

Preceding and Rule Correctness means that the more correct the stated rule was, the bigger the drop in

response time between the trials preceding the last error and those following it. This is consistent with

the effect described in non-linguistic learning by Haider & Rose (2007), in which rule discovery enables the

participant to respond correctly after listening to only one of the two stimuli.

3.4 Discussion

These results support the hypothesis that phonotactic patterns, like visual ones, can be induced using

both implicit and explicit processes. The experiment also found learning-mode variety among participants.

Although signs of explicit learning were rarer in the Implicit-Promoting condition than in the Explicit-

Promoting condition, Rule-Seekers and Rule-Staters were found in substantial numbers in both conditions,

and some participants reported using a mix of approaches. Many spontaneously used the alphabet or self-

invented phonetic terminology to facilitate explicit learning.

4 Experiment 2

It is possible that Experiment 1 was not representative of phonological learning, either in the lab or in

nature, and that it had characteristics that made both conditions especially favorable to explicit learning.

Experiment 2 therefore differed from Experiment 1 in multiple ways. Where the gender-assignment scenario

in Experiment 1 simulated learning to distinguish lexical classes within a language, Experiment 2 used a

different scenario, vocabulary learning, to construct a situation in which participants could be asked to

tell possible (well-formed) from impossible (ill-formed) words. Where the Implicit- and Explicit-Promoting

conditions of Experiment 1 differed in instructions, feedback, and number of stimuli per trial, those of

Experiment 2 differed only in whether each trial presented two well-formed stimuli (Implicit-Promoting) or

one well-formed and one ill-formed (Explicit-Promoting). That made the feedback in the Implicit-Promoting

condition of Experiment 2 useless for testing hypotheses about the pattern. One might therefore expect that

23



the paradigm used in Experiment 2 would reduce or abolish the explicit learning observed in Experiment 1.

4.1 Methods

Participants in both conditions of Experiment 2 were trained to associate pictures with their (pattern-

conforming) names, and were then shown novel pictures and asked to choose between novel pattern-conforming

and nonconforming names for them. Instructions and feedback were the same in both training condi-

tions. The only difference between the conditions was that the foil (incorrect choice) on each training trial

was pattern-conforming in the Implicit-Promoting condition, and pattern-nonconforming in the Explicit-

Promoting condition. A training trial is shown in Figure 5.

Figure 5: Participant view of a training and/or test trial in Experiment 2.

The critical feature was chosen from two/three syllables, first-/second-syllable stress, and stops/fricatives,

featues which had all yielded high test-phase performance in Experiment 1. The training-phase instructions

said nothing to either group about a pattern; participants where simply asked to learn which word went with

which picture. Both training conditions in Experiment 2 used two-alternative choice trials with feedback.

On each training trial, a positive word-picture pair (a picture plus a pattern-conforming word stimulus) was

matched with a negative word-picture pair (a different picture plus a non-conforming word stimulus). The

participant saw only the positive picture, with two buttons below it. Mousing over one button played the

name of the picture (the positive stimulus); mousing over the other played a foil (the negative stimulus). After

all 32 positive and all 32 negative pairs had been presented, the positive word-picture pairs were randomly

re-matched with negative word-picture pairs for the next cycle (thereby changing, on average, all but one

matching, Zager & Verghese 2007). The only difference between the training conditions was that the foils

were pattern-conforming in the Implicit-Promoting condition, but non-conforming in the Explicit-Promoting
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condition.

The test phase for both groups was like the training phase for the Explicit-Promoting group, except

that no feedback was given. Both groups were instructed to make their test-phase decision “based on which

choice sounds more like it would be a word in the artificial language”. The Implicit-Promoting condition thus

resembled other “artificial language” paradigms in which participants are familiarised on pattern-conforming

items, then asked to choose between novel conforming and nonconforming items (e.g., Carpenter 2005; Chong

2021; Cristiá, Mielke, Daland & Peperkamp 2013; Finley 2011; Greenwood 2016; Kuo 2009; Lai 2015; Linzen

& Gallagher 2014; Moreton 2008; Moreton, Pater & Pertsova 2015; Myers & Padgett 2014). Questionnaires

were scored as in Experiment 1.

Of 229 participants who completed the experiment, 53 were excluded from analysis (4 reported a non-

English L1, 5 reported taking written notes, 27 reported choosing test-phase responses that were maximally

unlike what they were trained on, 1 fell below the minimum performance criterion of at least 10 correct an-

swers in the test phase, and 16 were excluded for two or more of these reasons), leaving 176 valid participants,

99 in the Explicit-Promoting condition and 77 in the Implicit-Promoting condition.12

4.2 Results

4.2.1 Hypothesis 1: Rule-seeking and rule-stating are influenced (but not wholly determined)

by instructions, feedback, and/or intention to learn

Rule-Seekers and Rule-Staters were again found in both training conditions (Figure 6). Participants in the

Explicit-Promoting condition were numerically more likely than those in the Implicit-Promoting conditon

to be Rule-Seekers, but the difference was only marginally significant (p = 0.08193 by Fisher’s exact test,

two-sided). Participants in the Explicit-Promoting condition were again significantly more likely to be Rule-

Staters (p = 0.0006625 respectively by Fisher’s exact test, two-sided).

4.2.2 Hypothesis 2: Stating a correct rule predicts better generalisation performance

The data was analyzed using complex survey design, as in Experiment 1. Table 10 shows that Incorrect

Staters and Non-Staters performed above chance in the Implicit-Promoting condition. Correct and Approx-

imate Staters did much better than Incorrect Staters and Non-Staters in the Explicit-Promoting condition,

12In the interests of both statistical power and expositional brevity, the analysis here combines data from two temporally-
separated runs of the same identical experiment, an initial batch with 142 completed participants (109 valid), plus a subsequent
batch of 87 completed participants (67 valid) that was run alongside Experiment 5 to verify that the participant population
was behaving stably on Type I. Results from both batches are very similar. The most notable consequence of merging them is
that the facilitating effect of the Explicit-Promoting condition on rule seeking, which was significant when the initial batch is
analyzed alone, drops to marginal significance when the two batches are analyzed together.
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Figure 6: Test-phase performance as a function of training condition, rule-seeking, and rule-stating, Experi-
ment 2. Plotting symbols: Black circle = Correct Stater, gray circle = Approximate Stater, crossed circle =
Incorrect Stater, white circle = Non-Stater. A horizontal line segment marks the chance performance level
of 50%.

but the benefit of rule correctness vanished in the Implicit-Promoting condition, as shown by the significant

negative coefficient for Implicit-Promoting × Rule Correctness.

Coefficient Estimate Std. Error t value p
(Intercept) 0.137 0.085 1.615 0.1082
Implicit-Promoting 0.456 0.181 2.519 0.0127 *
Rule Correctness 1.583 0.207 7.625 1.58e-12 ***
Implicit-Promoting × Rule Correctness -1.416 0.300 -4.715 4.97e-06 ***

Table 10: Summary of fixed effects in the complex survey design logistic-regression model for pattern-
conformity of generalisation-test responses, Experiment 2 (5632 responses from 176 participants).

4.2.3 Hypotheses 3 and 4: Correct rule-stating is associated with more-abrupt learning curves

and with response-time acceleration after the last error

In the Explicit-Promoting condition, where attending to pattern-conformity could help performance, Correct

Stater Solvers showed a more-abrupt performance jump across the last error, and their good performance

persisted throughout the test phase. Others (Non-Staters, Incorrect Staters, and Approximate Staters)

showed more-gradual improvement which tended to relapse in the test phase. The effect of Correct Stating

on abruptness is confirmed statistically using the same model as in Experiment 1 (Table 11). The response-

time acceleration at the last error as a function of Rule Correctness was replicated here (Table 12). Complex
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survey design was used as in Experiment 1 because of the repeated measure on Participant.

Coefficient Estimate Std. Error t value Pr > |t|
(Intercept) 1.505 0.1916 7.858 6.98e-11 ***
Rule Correctness −0.731 0.2587 −2.827 0.00632 **

Table 11: Summary of the complex survey design logistic-regression model for pattern-conformity of training-
phase responses in the 16-trial window preceding the last error before the 16-trial criterion run, for Solvers
in the Explicit-Promoting condition of Experiment 2. (815 responses from 64 participants, excluding 3 more
participants who either never made an error, or who only made an error on their first trial.)

Coefficient Estimate Std. Error t value Pr > |t|
(Intercept) 2.539 0.1182 21.472 < 2e− 16 ***
Preceding −0.015 0.0240 −0.631 0.530642
Rule Correctness −0.175 0.0670 −2.623 0.010987 *
Preceding × Rule Correctness 0.106 0.0433 2.459 0.016795 *
log(Trial Number - 1) −0.092 0.0241 −3.837 0.000298 ***

Table 12: Summary of the complex survey design general linear model for log response time, correct responses
from Solvers in the Explicit-Promoting condition within 16 trials of their last error. (1646 observations from
66 participants.)

4.3 Discussion

The vocabulary-learning scenario of Experiment 2 produced nearly the same results as the gender-learning

scenario of Experiment 1. The change in learning scenario thus did not affect the availability of implicit and

explicit processes.

Unlike in Experiment 1, however, the two training conditions did not differ significantly in the rate of

rule-seeking (perhaps because the instructions, task, and feedback were the same in both), and Correct

and Approximate Stating, which in Experiment 1 occurred frequently in both training conditions, was

in Experiment 2 confined almost entirely to the Explicit-Promoting condition. It thus appears that the

opportunity to compare conforming and non-conforming stimuli on the same trial tends to facilitate successful

explicit learning (not altogether surprisingly, since explicit learning relies on working memory; see Section

2).

5 Discussion: Experiments 1 and 2

The first two experiments asked whether human inductive learning of phonotactic patterns showed evidence

for distinct implicit and explicit systems similar to that observed in inductive learning of non-linguistic

patterns (Section 2).
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Explicit-Promoting Implicit-Promoting
Seekers Non-Seekers Seekers Non-Seekers

Non-Staters 17 9 18 29
Staters 37 0 28 4

Correct Staters 21 0 13 3
Approximate Staters 9 0 4 0
Incorrect Staters 7 0 6 1

Table 13: Rule-Stating and correctness of stated rule as a function of Rule-Seeking, Experiment 1

Hypothesis 1: Rule-seeking and rule-stating are influenced (but not wholly determined) by instructions,

feedback, and/or intention to learn. This hypothesis was supported by differences between the Explicit- and

Implicit-Promoting conditions in Experiments 1 and 2. However, in both experiments, Rule-Seekers were in

the majority even in the Implicit-Promoting conditions, which were designed to discourage rule-seeking in

the first place, to misdirect rule-seeking away from the actual pattern if attempted, and to render rule-seeking

futile even if correctly directed. It may seem incredible that those who reported rule-seeking in either of

the Implicit-Promoting conditions could have been doing anything that would benefit their performance in

the generalisation test. And yet they were: Even in the Implicit-Promoting conditions, Rule-Seekers were

significantly more likely than Non-Seekers to be Staters and to be Correct Staters (Tables 13 and 14; the

four tables with the associated statistical tests, which were done using Firth-penalised logistic regression in

order to reduce the risk of inflated significance due to empty or near-empty cells, are omitted for reasons of

space).

Explicit-Promoting Implicit-Promoting
Seekers Non-Seekers Seekers Non-Seekers

Non-Staters 20 26 28 28
Staters 49 4 15 6

Correct Staters 31 0 4 3
Approximate Staters 12 1 1 2
Incorrect Staters 6 3 10 1

Table 14: Rule-Stating and correctness of stated rule as a function of Rule-Seeking, Experiment 2

We can only speculate as to why there were so many Rule-Seekers in the Implicit-Promoting conditions,

and what they were doing that could possibly have improved test-phase performance. Some may have only

begun to look for a rule once the test phase started, but (mis)reported rule-seeking during training. However,

it seems likely to us that many were simply doing what many of us would have been doing in their place,

namely, trying to figure out what the experiment was really about. Even though the task made the search

unhelpful for the training phase, participants may have noticed shared properties of the stimuli which they

then used as the basis for a rule once the test phase started and they were confronted with non-conforming
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foils.

Hypothesis 2: Stating a correct rule predicts better generalisation performance. In both experiments, Cor-

rect and Partly-Correct Staters gave significantly more pattern-conforming responses on the generalisation

test than did Non-Staters or Incorrect Staters. The effect was particularly clear among Solvers. All Solvers,

by definition, finished the Explicit-Promoting training phase with sixteen consecutive correct responses, but

the Correct Stater Solvers’ high performance continued into the generalisation test, while that of the other

Solvers fell sharply (see Figure 4).13 Participants’ rule reports were therefore largely accurate descriptions of

their own response behavior. The straightforward interpretation is that participants responded by applying

their stated rule.

Hypothesis 3: Correct rule-stating is associated with a more-abrupt learning curve. Solvers in the Explicit-

Promoting condition had significantly lower performance immediately before their last error when they stated

a correct rule than when they did not.

Hypothesis 4: Correct rule-stating is associated with response-time acceleration after the last error. This

hypothesis was borne out. A straightforward interpretation of the two positive results is that rule discovery

did have a shortening effect on response times, similar to that found in for non-linguistic learning by Haider

& Rose (2007). Since two audio stimuli were presented on each training trial, one positive and one negative,

rule discovery could have allowed a participant to respond after listening to only one of them.

6 Experiment 3

The implicit and explicit systems are hypothesised to have different architectures and hence different in-

ductive biases: The rule-based explicit system is faster for patterns which depend on fewer features, while

the cue-based implicit system is faster for patterns which are supported by multiple overlapping cues (see

above, Section 2). Empirical support for this view comes from studies of visual pattern-learning involving

the contrast between Shepard et al. (1961)’s “Type II” and “Type IV” patterns. A Type II pattern is an if-

and-only-if relationship between two features, e.g., “circle if and only if black”. A Type IV pattern is defined

by resemblance to a three-feature prototype, e.g., “at most one feature different from a small white triangle”

(Figure 7). The typical finding is that Type II patterns are easier for humans to learn inductively than Type

IV (Nosofsky, Gluck, Palmeri, McKinley & Gauthier, 1994a; Shepard et al., 1961; Smith et al., 2004; Vigo,

2013).14 Changing the experimental conditions so as to encourage implicit learning reduces performance on

13A mixed-effects logistic-regression model was fit to just the data from Solvers, with Correct Response (1/0) as the dependent
variable, Correct Stater (1/0) as the predictor, and a random intercept for Participant. The coefficient for Correct Stater was
1.1 in Experiment 1 and 0.98 in Experiment 2, p < 0.0001 in both cases.

14Linear separability does not explain the difference: The same experiments find that Type II is also easier than the three-
feature non-linearly-separable Type III; see also Medin & Schwanenflugel (1981); Moreton et al. (2017).
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Figure 7: Examples of visual Type II and Type IV patterns.

Type II relative to Type IV (Kurtz et al., 2013; Love, 2002; Minda et al., 2008; Nosofsky & Palmeri, 1996;

Rabi & Minda, 2016; Zettersten & Lupyan, 2020).

Several proposals have been advanced in the psychology literature to explain the observed advantage of

Type II over Type IV. They are based on the idea that explicit rule learning is biased towards hypotheses that

involve fewer relevant features. As noted in Section 2, the proposals differ as to how this bias comes about, a

point which will become relevant in the post-hoc discussion (Section 9); for the nonce, we hypothesise merely

that, since only two features are relevant for Type II, whereas three are relevant for Type IV, Type II has

an advantage in explicit learning (Bradmetz & Mathy, 2008; Feldman, 2000,0; Kurtz et al., 2013; Lafond,

Lacouture & Mineau, 2007; Mathy & Bradmetz, 2004; Nosofsky et al., 1994b; Shepard et al., 1961; Vigo,

2009).

The two-systems hypothesis thus predicts that explicit learners will show an advantage for Type II over

Type IV which will be reduced or reversed for implicit learners. If phonotactic learning uses the same two

systems, the same effect of implicit versus explicit learning on the relative difficulty of Type II vs. Type

IV ought to be observed. Some indication that this might be the case comes from studies by Gerken et al.

(2019); Moreton et al. (2017), which found better performance on Type IV than Type II in adult phonotactic

learning, perhaps (we conjecture) because the participants were learning implicitly. Those experiments did

not, however, distinguish implicit from explicit learners, so we take up that task now.

Experiment 3 is like Experiment 1 except that, instead of all patterns being Type I (a single-feature

affirmation), each participant receives either a Type II or a Type IV pattern. The two-systems theory predicts

that participants who report explicit learning (rule-seeking) ought to show relatively better performance on

Type II than Type IV as compared to participants who do not report explicit learning (Hypothesis 5 ).

6.1 Methods

The critical feature were chosen from among two/three syllables, stops/fricatives, and labials/alveolars. For

each participant in the Type II condition, every phonological feature was randomly paired with a unique

30



dimension of the Type II example in Figure 7; e.g., for one participant, stops/fricatives would be paired

with black/white; for another, stops/fricatives might be paired with white/black, or with large/small, or

with square/triangle. For each participant in the Type IV condition, the same was done with the Type IV

example. Of 112 participants who completed the experiment, 31 were excluded from analysis (4 reported

a non-English L1, 11 reported taking written notes, 7 reported choosing test-phase responses that were

maximally unlike what they were trained on, none fell below the minimum performance criterion of at least

10 correct answers in the test phase, and 2 were excluded for two or more of these reasons), leaving 88 valid

participants, 19 in the Type II Implicit-Promoting condition, 16 in the Type IV Implicit-Promoting condition,

25 in the Type II Explicit-Promoting condition, and 28 in the Type IV Explicit-Promoting condition.

6.2 Results

Since no significant results were found in the analyses of Hypothesis 3 and Hypothesis 4 in this or in any

subsequent experiment, the corresponding sections are omitted.

6.2.1 Hypothesis 1: Rule-seeking and rule-stating are influenced (but not wholly determined)

by instructions, feedback, and/or intention to learn

Rule-seeking and rule-stating occurred in both training conditions (Figure 8). Fisher’s exact test could no

longer be used as it was in Experiments 1 and 2, because the additional Type (II vs. IV) factor meant that the

data no longer formed a two-dimensional contingency table. In order to reduce the risk of false positives that

arises when ordinary logistic regression is applied to data sets which have some cells with few observations

in them, Firth-penalised logistic regression was used instead, fit using the logistf method in R’s logistf

package (Firth, 1993; Heinze & Ploner, 2018). Seeker was the dependent variable and Training Condition

and Type were predictors. No significant effect of either predictor was found and no interaction (Table 15).

However, in the Type II condition, Rule-Staters were significantly rarer in the Implicit-Promoting group as

shown by the significant negative coefficient of Implicit-Promoting in Table 16 . No significant effects of or

interactions with Type were found (Table 16).

Coefficient Estimate Std. Error χ2 value p
(Intercept) 1.3156 0.4897 9.2122 0.00240
Implicit-Promoting -0.3462 0.7097 0.2488 0.61790
IV -0.2625 0.6527 0.1690 0.68099
IV × Implicit-Promoting -0.9432 0.9713 0.9927 0.31906

Table 15: Fitted Firth-penalised logistic-regression model for Rule-Seeking as a function of Training Condi-
tion and Type, Experiment 3
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Figure 8: Test-phase performance as a function of training condition, rule-seeking, and rule-stating, Experi-
ment 3. Plotting symbols: Black circle = Correct Stater, gray circle = Approximate Stater, crossed circle =
Incorrect Stater, white circle = Non-Stater. A horizontal line segment marks the chance performance level
of 50%.

6.2.2 Hypothesis 2: Stating a correct rule predicts better generalisation performance

There were so few Correct and Approximate Staters in the Implicit-Promoting condition, particularly in

Type II, that a model with Rule Correctness as a predictor could not be fit. The analysis was therefore

restricted to the Explicit-Promoting condition alone. Pattern type was coded with Type II as 0 and Type

IV as 1. Complex survey design logistic regression was used as in Experiment 1. The fitted model is shown
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Coefficient Estimate Std. Error χ2 value p
(Intercept) 0.0769 0.4002 0.0384 0.8445
Implicit-Promoting -1.3137 0.6797 4.2464 0.0393 *
IV 0.0611 0.5511 0.0127 0.9099
IV × Implicit-Promoting 0.9391 0.9268 1.0935 0.2956

Table 16: Fitted Firth-penalised logistic-regression model for Rule-Stating as a function of Training Condition
and Type, Experiment 3

in Table 17. Participants in the Type II condition who were not Correct or Approximate Staters nonetheless

chose pattern-conforming responses at above-chance levels, as shown by the significantly positive intercept.

Those who were Correct or Approximate Staters were very much more likely to respond in conformity with

the pattern, as shown by the large and significant positive coefficient for Rule Correctness. Participants in

Type IV did not differ significantly from those in Type II.

Coefficient Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.3928 0.1256 3.128 0.0029 **
Rule Correctness 3.0925 0.8564 3.611 0.0007 ***
IV 0.1092 0.2189 0.499 0.6202
Rule Correctness × IV −0.5352 1.1195 −0.478 0.6347

Table 17: Summary of fitted complex survey design logistic-regression model for pattern-conformity of
generalisation-test responses, Experiment 3, Explicit-Promoting condition only. Type II is the reference
category. (1696 responses from 53 participants.)

6.2.3 Hypothesis 5: Rule-seeking is associated with better IFF/XOR and/or worse Family-

resemblance performance

Previous experiments with non-linguistic patterns have found that performance on Type II patterns is

typically better than on Type IV, and that conditions which favor explicit learning improve performance

on Type II relative to Type IV (Kurtz et al., 2013; Love, 2002). Figure 8 shows that in both the Explicit-

Promoting and Implicit-Promoting groups, Seekers perform better than Non-Seekers on Type IV, but not on

Type II. I.e., Type II, the pattern type that in the past has been found to benefit the most from an explicit

learning approach, actually benefited the least. Among Seekers in both training conditions, performance on

Type II is well below that on Type IV. These observations are confirmed by a mixed-effects logistic-regression

model (Table 18), in which the only significant terms are the intercept and the interaction IV × Seeker. The

hypothesis is therefore, not merely not supported, but outright contradicted by the results.
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Coefficient Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.78846 0.31239 2.524 0.01358 *
IV -0.57335 0.38415 -1.493 0.13950
Implicit-Promoting -0.05757 0.47608 -0.121 0.90405
Seeker -0.17628 0.35987 -0.490 0.62559
IV × Implicit-Promoting 0.58286 0.54828 1.063 0.29095
IV × Seeker 1.28717 0.47689 2.699 0.00848 **
Seeker × Implicit-Promoting 0.18239 0.55661 0.328 0.74401
Seeker × Implicit-Promoting × IV -0.93507 0.68775 -1.360 0.17777

Table 18: Summary of fixed effects in the fitted logistic-regression model for pattern-conformity of
generalisation-test responses, Experiment 3. Type II is the reference category. (2816 responses from 88
participants.)

6.3 Discussion

The learning-mode variety found with Type I patterns in Experiments 1 and 2 was replicated here: Rule-

seeking and rule-stating occurred in both training conditions and for both Type II and Type IV target

patterns, and the Explicit-Promoting condition facilitated rule-stating. Moreover, learning mode affected,

not just the absolute, but the relative difficulty of the two pattern types: Self-reported rule-seeking improved

performance on Type IV so much that it exceeded performance on Type II. Learning mode is thus confirmed

to vary between participants and to affect inductive bias. The direction of the effect (explicit learning

favoring Type IV) contradicts the prediction of Hypothesis 5, being unexpected under models of rule-based

learning which incorporate a bias towards patterns that depend on fewer features (Section 2). A post-hoc

explanation for this surprising reversal is deferred to Section 9 below.

The Correct Staters, who in the earlier experiments formed a mode at 100% in the distribution of test-

phase performance, were absent from Experiment 3, presumably because the correct rules were harder to

find or to state. The Approximately-Correct Staters did show better generalisation performance than Non-

Staters and Incorrect Staters, as before. However, no significant effect of Rule Correctness on abruptness

or response time was found. That could simply be because Rule Correctness only ranged up to 0.5, i.e, any

helpful effect of Rule Correctness was coming from a less-helpful partially-correct rule. More interestingly,

it could instead be a sign that multi-feature rules are found incrementally rather than all at once: If rule

discovery occurs in successive stages (e.g., with the identification of one relevant feature at a time), then each

stage would bring with it a increment in accuracy and a decrement in response time, so that any comparison

of performance just before and just after a single trial would find only a small difference. The lack of a Rule

Correctness effect on abruptness or response time could also mean that multi-feature rules, once found, are

harder to apply, such that the difference in accuracy or speed between having no rule at all and having a

correct rule is smaller when the correct rule is hard to apply than when it is easy to apply.
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7 Experiment 4

The results of Experiment 3 were surprising enough that Experiment 4 was done to see if they would replicate.

In Experiment 3, some of the Type II patterns, and all of the Type IV patterns, involved the two features

fricatives/stops and labial/coronal, which were both realised on the consonants. That meant that some

Type II patterns could be learned correctly by focusing on the consonants and learning only the consonant

inventory, whereas no Type IV pattern could be learned correctly without integrating features that were

spread across the stimulus. To remove this asymmetry between Type II and Type IV, Experiment 4 used

first- vs. second-syllable stress in place of Experiment 3’s labial vs. coronal consonants. Otherwise the two

experiments were the same.

7.1 Methods

The stimuli, instructions, and procedure were identical to those of Experiment 3. Of 173 participants who

completed the experiment, 4 were subsequently excluded for reporting a non-English L1, 1 for reporting

deliberately choosing test-phase items that sounded different from the training items, 7 for reporting taking

written notes, and 2 for falling below the 10-out-of-32 criterion. That left 151 valid participants, 36 in the

Explicit-Promoting Type II condition, 40 in the Implicit-Promoting Type IV condition, 40 in the Explicit-

Promoting Type II condition, and 35 in the Explicit-Promoting Type IV condition.

7.2 Results

7.2.1 Hypothesis 1: Rule-seeking and rule-stating are influenced (but not wholly determined)

by instructions, feedback, and/or intention to learn

As in all previous experiments, rule-seeking and rule-stating occurred in both training conditions and in

both pattern-type conditions (Figure 9). A Firth-penalised logistic-regression model with Seeker as the

dependent variable and Training Condition and Type as predictors was used, for the same reasons explained

in Section 6.2.1, and found no significant effect of either predictor and no interaction (table omitted to save

space). Implicit-Promoting Type II participants were numerically less likely than Explicit-Promoting Type II

participants to state a rule, but the difference was only marginally significant (Table 19). Participants in the

Type IV Explicit-Promoting condition were much more likely to be Staters than those in the Type II Explicit-

Promoting condition, and those in the Type IV Implicit-Promoting condition did not differ significantly from

those in the Type IV Explicit-Promoting condition.
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Figure 9: Test-phase performance as a function of training condition, rule-seeking, and rule-stating, Experi-
ment 4. Plotting symbols: Black circle = Correct Stater, gray circle = Approximate Stater, crossed circle =
Incorrect Stater, white circle = Non-Stater. A horizontal line segment marks the chance performance level
of 50%.
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Coefficient Estimate Std. Error χ2 value p
(Intercept) -0.4978 0.3260 2.4638 0.1164
Implicit-Promoting -0.8716 0.5274 2.9275 0.0870 .
IV 1.2541 0.4875 7.1490 0.0075 **
IV × Implicit-Promoting -0.7088 0.7263 0.9728 0.3239

Table 19: Fitted Firth-penalised logistic-regression model for Rule-Stating as a function of Training Condition
and Type, Experiment 4.

7.2.2 Hypothesis 2: Stating a correct rule predicts better generalisation performance

The mode at 100% pattern-conforming generalisation responses which was found in Experiments 1 and 2,

and which disappeared with the switch to more-complex pattern types in Experiment 3, was again absent

here. There were not enough Correct or Approximate Staters in the Type II condition for the model to be fit

accurately, so only the Type IV condition was analyzed. A complex survey design logistic-regression model

was used because of the repeated measure on Participant. Neither Rule Correctness nor Training Condition

had any significant influence on test-phase performance (table omitted to save space). The ineffectiveness of

Rule Correctness may be due in part to its small range: Since there were no Correct Staters, the experiment

could only measure the (smaller) difference between Approximately-Correct Staters and others.

7.2.3 Hypothesis 5: Rule-seeking is associated with better IFF/XOR and/or worse Family-

resemblance performance

The fitted model is shown in Table 20. In the Explicit-Promoting condition, Seekers do not outperform Non-

Seekers in the Type II condition (as shown by the small and non-significant coefficient for Seeker), but do so in

the Type IV condition (large and significant coefficient for IV × Seeker). This much is consistent with what

was found in Experiment 3. In the Implicit-Promoting condition, however, this interaction is significantly

reduced (the large and significantly nonzero coefficient for the three-way interaction is numerically larger

than the coefficient for IV × Seeker).

7.3 Discussion

The outcome of Experiment 4 was very much like that of Experiment 3. In particular, the same novel

effect seen in Experiment 3 is replicated in Experiment 4: In the Explicit-Promoting condition, self-reported

rule-seeking benefits Type IV performance more than it does Type II performance, contrary to previous

theoretical proposals and unlike previous experimental results. This is true even though no Seekers in the

Type IV condition succeeded in stating a wholly correct rule, and even though Approximate Stating did not

significantly improve generalisation performance. These results again directly contradict Hypothesis 5.
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Coefficient Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.03572 0.07436 0.480 0.63172
IV 0.46032 0.17022 2.704 0.00768 **
Implicit-Promoting 0.16229 0.11175 1.452 0.14862
Seeker 0.24005 0.14738 1.629 0.10556
IV × Implicit-Promoting 0.05834 0.23292 0.250 0.80256
IV × Seeker 0.64570 0.25332 2.549 0.01186 *
Seeker × Implicit-Promoting 0.29953 0.24421 1.227 0.22201
Seeker × Implicit-Promoting × IV -0.98736 0.38759 -2.547 0.01191 *

Table 20: Summary of fitted complex survey design logistic-regression model for pattern-conformity of
generalisation-test responses, Experiment 4. Type II is the reference category. (4832 responses from 151
participants.)

8 Experiment 5

This experiment sought to replicate the rule-seeking effect on the Type IV advantage over Type II using the

vocabulary-learning paradigm of Experiment 2.

8.1 Methods

The stimuli, instructions, and procedure were identical to those of Experiment 2, except that each participant

was randomly assigned a Type II, or Type IV pattern, stated in terms of two or three of the properties

disyllabic/trisyllabic, first-/second-syllable stress, and stop/fricative consonants. 176 participants completed

the experiment. 8 were subsequently excluded for reporting a non-English L1, 31 for reporting deliberately

choosing test-phase items that sounded different from the training items, 7 for reporting taking written notes,

3 for falling below the 10-out-of-32 criterion, and 8 for multiple reasons. That left 119 valid participants,

33 in the Implicit-Promoting Type II condition, 31 in the Implicit-Promoting Type IV condition, 22 in the

Explicit-Promoting Type II condition, and 33 in the Explicit-Promoting Type IV condition.

8.2 Results

8.2.1 Hypothesis 1: Rule-seeking and rule-stating are influenced (but not wholly determined)

by instructions, feedback, and/or intention to learn

As in all previous experiments, both rule-seeking and rule stating were found in both training conditions

(Figure 10). However, as in Experiment 2, training condition did not affect either of these two variables

significantly (tables omitted to save space).

38



0.
4

0.
6

0.
8

1.
0

P
r 

(c
or

r)
 in

 te
st

Seekers Nonseekers

Explicit−Promoting

Seekers Nonseekers

Implicit−Promoting

Type II

0.
4

0.
6

0.
8

1.
0

P
r 

(c
or

r)
 in

 te
st

Seekers Nonseekers

Explicit−Promoting

Seekers Nonseekers

Implicit−Promoting

Type IV

Figure 10: Test-phase performance as a function of training condition, rule-seeking, and rule-stating, Exper-
iment 5. Plotting symbols: Black circle = Correct Stater, gray circle = Approximate Stater, crossed circle =
Incorrect Stater, white circle = Non-Stater. A horizontal line segment marks the chance performance level
of 50%.
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8.2.2 Hypothesis 2: Stating a correct rule predicts better generalisation performance

Because there were no Correct or Approximate Staters in the Type II condition, the effects of Rule Cor-

rectness on pattern-conformity of test-phase responses were analyzed only for Type IV. A complex survey

design logistic-regression model with the pattern-conformity of each generalisation-test response as the de-

pendent variable and Rule Correctness and Training Condition was fit as shown in Table 21. The large and

highly-significant coefficient for Rule Correctness shows that Correct and Approximate Stating increased the

chances of a pattern-conforming test-phase response in the Explicit-Promoting condition. Incorrect Staters

and Non-Staters in the Explicit-Promoting condition were marginally less likely to give a pattern-conforming

response, but the coefficient for the interaction between Training Condition and Rule Correctness was small

and non-significant, indicating that Correct and Approximate Stating facilitated pattern-conforming test-

phase responses in both training conditions.

Coefficient Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.5539 0.1187 4.666 1.76e-05
Rule Correctness 2.3614 0.7432 3.177 0.00235 ***
Implicit-Promoting −0.2935 0.1583 −1.854 0.06863 .
Rule Correctness × Implicit-Promoting −0.3362 1.0816 −0.311 0.75700

Table 21: Summary of fitted logistic-regression model for pattern-conformity of generalisation-test responses,
Experiment 5, Type IV only. (2048 responses from 64 participants.)

8.2.3 Hypothesis 5: Rule-seeking is associated with better IFF/XOR and/or worse Family-

resemblance performance

Rule-seeking had no significant effect on test-phase pattern-conformity of Type II vs. Type IV in either

training condition. There was a non-significant numerical trend in the same direction as in Experiments 3

and 4 (table omitted to save space).

8.3 Discussion

The results of Experiment 5 did not directly contradict Hypothesis 5 the way Experiments 3 and 4 did, but

Experiment 5 did not support Hypothesis 5 at all. The nonsignificant numerical trend went in the “wrong”

direction for Hypothesis 5, i.e., to the benefit of Seekers over Non-Seekers in the Type IV condition but not

in the Type II condition.
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9 Discussion: Experiments 3–5

Participants in the Type II/IV experiments (Experiments 3–5), like those in the Type I experiments (Exper-

iments 1 and 2), showed evidence of using both implicit and explicit learning. Rule-seeking and rule-stating

were found in every condition of every experiment, and were facilitated in the Explicit-Promoting condition

in Experiments 3 and 4 relative to the Implicit-Promoting condition. Some findings of the Type I experi-

ments were not replicated. Correct Staters were much rarer; the generalisation test no longer showed a mode

at or near 100% corresponding to Correct and Approximate Staters; and Correct or Approximate Stating no

longer resulted in significantly more-abrupt learning curves or faster response times among Solvers. These

differences from the Type I experiments can be traced to the same source: Since the completely correct

rule is harder to find and state explicitly in the Type II/IV experiments than in the Type I experiments,

any effect of rule correctness in the Type II/IV experiments originates mainly in the weaker effect of an

approximately-correct rule.

The results also confirmed the prediction that implicit and explicit learning can have different inductive

biases. What was surprising was the direction of the difference: Rule-seeking benefited performance in the

Type IV condition, but not the Type II condition (in Experiment 3 and the Explicit-Promoting condition

of Experiment 4). In these experiments, the explicit and implicit processes are roughly equally successful on

Type II (no significant effect of Seeker or interaction with it), but the implicit process is less successful than

the explicit process on Type IV (significant positive interaction of Seeker with Type = IV ). The effect of

learning mode on bias was the exact opposite of what one would expect based on the theories and empirical

studies of domain-general explicit learning reviewed in Section 2.

Where does this difference between phonological learning and non-linguistic learning come from? We

consider two possible post-hoc hypotheses, one based on between-domain differences in implicit learning, the

other based on between-domain differences in explicit learning.

9.1 Option 1: Implicit phonological learning is feature-minimizing

One possibility is that implicit learning works differently in phonology versus other domains. Specifically,

a human learner might have a domain-general explicit learning process with a feature-minimisation bias,

a domain-general implicit learning process without a feature-minimisation bias, and a dedicated implicit

phonological learning process with an especially strong feature-minimisation bias that pre-empts the general

implicit process for phonological stimuli. Feature-minimisation bias is a well-established idea in phonology,

e.g., Chomsky & Halle (1968, 168, 221, 331, 334); Bach & Harms (1972); King (1969, 88–89); Smith (1973,

155–158); Gordon (2004); Hayes (1999); Hayes & White (2013); Hayes & Wilson (2008); Hayes, Zuraw, Siptár
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& Londe (2009); Kiparsky (1982); Pycha, Nowak, Shin & Shosted (2003), to name only some proposals that

explicitly ascribe a bias to human learners of natural language. 15 That would explain how switching from

implicit to explicit learning can improve performance on Type IV relative to Type II in phonology, while

doing the opposite in other domains.

However, there is empirical evidence against this alternative: In an in-person study that compared

eight-feature phonological patterns with their feature-by-feature visual analogues using a task similar to

the Implicit-Promoting condition of Experiment 1, performance was significantly better on Type IV than

on Type II in both the phonological and the visual condition (Moreton et al., 2017, Experiments 1 and

2). Since Option 1 hypothesizes that both the phonology-specific implicit process and the domain-general

explicit process learn Type II better than Type IV, there is no way for Option 1 to explain this outcome,

regardless of how many participants used each learning mode.

9.2 Option 2: Explicit learning is impeded by irrelevant features

A second possibility is that explicit learning works differently in phonology versus other domains — not

because humans are endowed with a dedicated phonology-specific explicit learning mechanism, but because

phonological stimuli have properties which are rarely found in other domains and which interact with the

explicit process of serial hypothesis testing.

To see how this might happen, we note that the explicit-learning component of the domain-general two-

systems hypothesis (Section 2) is based on data mainly from experiments in low-dimensional stimulus spaces

like that in Figure 7, where the only features that vary are colour, shape, and size. Phonological stimuli are

different. The ones used here varied not only on the six experimentally-manipulated dimensions of syllable

count, labial vs. coronal, etc., but also on features like voicing and vowel height that were randomized to

make distinct stimuli. They also varied on ad-hoc phonological properties such as “ends with an F”, which

participants readily invented. Typical phonological stimuli thus have many more pattern-irrelevant features

than the non-linguistic patterns which formed the empirical basis of the explicit-learning component of the

two-systems theory. Irrelevant features have been shown to increase errors and time- or trials-to-criterion in

non-linguistic concept-learning tasks that are designed to encourage explicit reasoning (e.g., Archer, Bourne

& Brown 1955; Keele & Archer 1967; Kepros & Bourne 1966; Peterson 1962). Here we propose a way in

which they may also influence sensitivity to Type II vs. Type IV.

15Others propose a negative correlation between feature count and human learnability in the lab (e.g., Durvasula & Liter
2020) or between feature count and typological frequency in natural language (e.g., Clements 1985; Halle 1961; Sagey 1990,
1; Kenstowicz 1994, 21; Clements 2003), but do not say outright that human learners are subject to a bias in acquiring
natural language. The preceding examples do not include the many feature-minimisation proposals that are intended, not as a
description of learning biases or typological asymmetries, but as an analytic criterion for the guidance of linguists. See Chen
(1973) for discussion of the distinction.
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Suppose that explicit learners search for the relevant dimensions (“attribute identification”, Haygood

& Bourne 1965) by serially testing one-dimensional rules (Neisser & Weene, 1962; Wattenmaker, McQuaid

& Schwertz, 1995). In the Type IV condition, this is a promising strategy: Each relevant dimension,

individually, can yield a one-feature rule that is 75% correct during Explicit-Promoting training, and that

characterizes 75% of the (all-positive) training items during Implicit-Promoting training. In contrast, one-

feature rules based on the irrelevant dimensions are only 50% correct. A learner in the Type IV condition

can use this difference in correctness rate to distinguish relevant from irrelevant dimensions. But in the Type

II condition, any single relevant dimension yields a rule that is only 50% correct, thus making the relevant

dimensions indistinguishable from the irrelevant ones. The serial-search procedure is bound to fail. One

Type II participant described the failure thus:

I looked for many different kinds of rules to no avail. I tried going by the vowel at the beginning

of the word. I tried going by what consonants were used, how many syllables, what consonants were

used when certain numbers of syllables were used, the long and short sounds of vowels, and anything

else I could think of. I couldn’t find a rule. From then on I decided to go more for gut feeling and

finally I began to focus on memorizing the words. (Participant AJvCRg, Experiment 3, Type II,

Explicit-Promoting)

Support for this explanation comes from the fact that in all three II/IV experiments, Seekers in the

Type IV condition were much more likely than those in the Type II condition to mention at least one of

the pattern-relevant features in their free-response answers (Table 22). Across all three experiments, there

was a grand total of 2 Correct and 8 Approximate Type II Staters out of 103 Seekers, versus 0 Correct and

53 Approximate Type IV Staters out of 117 Seekers (Types II and IV significantly different from each other

by Fisher’s exact test, odds ratio = 0.13, p < 10−8). Seekers in the Type IV condition, it seems, readily

identified at least one relevant feature, whereas those in the Type II condition could hardly find the relevant

features at all.

Experiment
Type 3 4 5
II 0.03 0.07 0.00
IV 0.36 0.40 0.14

Table 22: Proportion of valid Seekers mentioning at least one pattern-relevant feature in any free-response
question.

The results of Experiments 3– 5 can then be interpreted as follows: The implicit parallel system, being

non-voluntary, is used by all participants, and learns Type IV better than Type II. The explicit serial system,
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when impeded by irrelevant features, rarely succeeds on Type II, but often finds a one-feature approximation

to Type IV, giving Type IV a further boost among participants who voluntarily use the explicit system.16

10 General discussion

The principal conclusions of the present study are that phonotactic learning, like non-linguistic learning, can

happen implicitly or explicitly, and that the implicit and explicit processes can have different inductive biases

(Table 23). These conclusions are strengthened when we note that the experiments could not cleanly sort

participants into one group of exclusively explicit learners and another of exclusively implicit ones: What

these experiments detected, they detected by comparing a less-explicit group with a more-explicit group.

These conclusions converge with and extend other recent findings on the existence of implicit vs. explicit

processes in phonological learning (Chen 2021; Kimper 2016; Moreton & Pertsova 2016; Moreton et al. 2021).

One surprising finding was the unexpected direction of the effect of rule-seeking on inductive bias: More-

explicit learning facilitated learning of Type IV patterns relative to Type II instead of hindering it. As

discussed in Section 9, that result cannot be explained by positing a dedicated phonology-specific implicit

learning process; instead, it has implications for the explicit component of the two-systems theory. Any

adequate theory of domain-general explicit learning will have to explain explicit phonological learning as

well, and so will need to take into account the effects of irrelevant features.

Experiment
1 2 3 4 5

Hypothesis G V G G V
1: Task affects rule-seeking/-stating, X Xa ?/Xb — —
but staters and non-staters found in both tasks (% staters, EP:IP): 59:36 59:27 36:20 52:43 52:51
2: Correct rule stating facilitates generalisation performance X X ?/Xc ?/—d X
3: Correct rule stating associated with more-abrupt learning curve X X — — —
4: Correct rule stating associated with RT acceleration after last error X X — — —
5: Rule-seeking facilitates Type II relative to Type IV n/a n/a →← →← —

Table 23: Summary of hypotheses tested in Experiments 1–5. G = gender scenario, V = vocabulary scenario.
X = supported, — = not supported, →← = contradicted (significant result in opposite direction). EP =
Explicit-Promoting condition. IP = Implicit-Promoting condition.

aOne effect only marginally significant.
bFound for rule-stating for Type II only.
cFound only for Explicit-Promoting condition; not enough rule staters in Implicit-Promoting.
dNot enough rule staters in Type II, and no Correct Staters to analyze in Type IV.

16Additional evidence that some participants were using the implicit system simultaneously with the explicit one comes from
the fact that, although Type IV participants’ rule statements often mentioned only one pattern-relevant feature, their responses
were not based solely on a one-feature rule. A one- (or two-) feature rule, consistently applied, would have produced 75%
correct test-phase performance. It is clear from Figures 8, 9, and 10, that there is no mode at 75% in the distribution of
proportion correct for Seekers in the Type IV condition. If anything, there tends to be a notch near 75%, and the mode among
the Approximate Staters (gray dots) is well above 85%. Type IV Staters’ responses must therefore be based on something more
than just their explicitly-stated approximate rule.
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10.1 What goes on in phonological learning experiments?

Because learning experiments have come to play a major role in testing phonological theories, it is important

to understand just what is happening in them. Researchers’ assumptions may be wrong in consequential

ways. For example, the authors were surprised by participants’ ability to verbalise phonological features

(Section 3.3.1), and reviewers were surprised by participants’ successful rule-seeking in conditions that were

designed to discourage, misdirect, and frustrate it (Section 5). At a more mundane, but no less consequential,

level, participants, especially in Internet-based experiments, may be using other non-psychological resources

that experimenters would not know about without asking; e.g., 5.1% of our participants reported taking

written notes. (Their data was excluded from the analysis, as noted above in the individual “Results”

sections, but that was only possible because the questionnaire specifically asked about note-taking.)

To be sure, it may be that all of the paradigms used in this study were abnormally favorable to explicit

learning, whereas those used in other studies elicited only implicit learning of precisely the sort that is

responsible for natural first- or second-language acquisition. That would be very fortunate. However, we

will not know for certain until we have a better understanding of what participants in phonological-learning

experiments are actually doing. It is therefore important to scrutinise experimental paradigms for signs of

learning-mode variety. The methods used in this paper are one attempt at doing that, and other proposed

methods for distinguishing implicit from explicit learning can be found in the literatures on non-linguistic

learning and second-language learning that go far beyond simply asking whether participants can state the

correct rule (see references in Section 2, above, as well as, e.g., Rebuschat 2013; Tunney & Shanks 2003).

What we find by applying them may affect the interpretation of previous studies, and may give researchers

better control over future ones.

10.2 Ecological validity of lab-learned phonology

Most of the evidence bearing on the ecological validity of phonological learning in the lab (i.e., does it use

the same processes as natural L1 or L2 learning?) comes from comparing inductive biases in the lab with

typological asymmetries in natural language. The linking hypothesis motivating these comparisons is that

the more closely lab-learning biases agree with natural-language typological asymmetries, the more likely it

is that both reflect the influence of Universal Grammar. The agreement between typology and lab results is

not strikingly close.

In terms of abstract pattern structure, learners in the lab tend to favor Type I over Type IV and Type

IV over Type II (Gerken et al. 2019; Moreton & Pater 2012a,1; see also Glewwe 2019, 168f.). In natural

language, phonologically-active classes defined by fewer features are indeed more common (Mielke, 2004,0)
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— but on the other hand, phonologically-active classes that can be expressed as Type II, like the left panel

in Table 24, are more common than those that can be expressed as Type IV, like the right panel (Moreton

& Pertsova, 2014).

–voice +voice
–distr +distr –distr +distr

–cont t p, tS, k n m

+cont s S, x, h l w,j

–round +round
–back [+back] –back] +back

+high i 1 y u

–high e a ø o

Type II: Consonants of Unami Delaware (Goddard,
1979). Boxes enclose sounds that can precede non-
coronal stops; they are [+cont] iff [−voice].

Type IV: The boxes enclose those Kirghiz vowels which
undergo raising and tensing before palatal consonants
(Hebert & Poppe, 1963, 3–7). The set can be described
as “any sound within one feature of /i/”.

Table 24: Examples of natural-language Type II and Type IV patterns, found by analyzing P-Base (Mielke,
2008; Moreton & Pertsova, 2014). Features as in Chomsky & Halle (1968).

In terms of phonetic substance, phonetically-motivated patterns are the norm in natural language, and it

is the phonetically “unnatural” patterns that linguists regard as demanding special explanation (Anderson,

1981; Bach & Harms, 1972; Brohan & Mielke, 2018; Buckley, 2000). In the lab, however, substantive biases —

those discriminating between patterns on the basis of phonetic motivation, such as final obstruent devoicing

vs. final obstruent voicing — are weak relative to structural biases (Moreton & Pater 2012a; Moreton &

Pater 2012b). (For opposing views, see Chen 2020; Finley 2017; Hayes & White 2013; Lin 2023; Martin

& Peperkamp 2020.) If substantive biases exist at all, they may be restricted to particular experimental

conditions such situations of high uncertainty (Baer-Henney, Kügler & van de Vijver, 2015; Huang & Do,

2022) or perceptual unclarity as in casual speech (Greenwood, 2016), or to particular kinds of phonetic

motivation such as perception rather than production (Glewwe, 2019), or they may only emerge when the

phonetic motivation is especially strong (Glewwe, 2022).

One interpretation of these mismatches between lab biases and typology, both in terms of abstract

structure and in terms of phonetic substance, is that typical short-term phonological-learning experiments

are ecologically invalid; i.e., the learning processes they are “about” are not the same ones used by natural

L1 or L2 learners. If that is so, then making the experiments more lifelike ought to change the outcomes in

a direction that more closely matches what is observed in natural-language typology. One example of this

line of work is Martin & Peperkamp (2020), which compared the learning of a typologically common vs. a

typologically rare phonological pattern with vs. without sleep between training and testing (more vs. less

lifelike). That study found no difference between the two conditions, but it could simply be that more is

needed for adequate ecological validity than a night’s sleep — perhaps even as much as is needed to acquire

phonotactic patterns in a natural second language (e.g., Trapman & Kager 2009).
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An alternate interpretation of the lab-vs.-typology mismatches is that it is the linking hypothesis that is

wrong, and that some interfering factor prevents natural-language typology from being an accurate reflection

of biases in natural-language learning. A likely candidate for that other factor is asymmetries in the phonetic

precursors available for phonologisation (Blevins, 2004; Hyman, 1976; Ohala, 1993). Suppose that inductive

bias favors Type IV over Type II patterns, such that, given two phonetic precursors, one a continuous

analogue of Type II, the other of Type IV, the probability of phonologising the Type II pattern from the same

level and duration of exposure is 0.01, while the like probability for the Type IV pattern is 0.05. If Type II

precursors outnumber Type IV precursors by 20 to 1 across the languages of the world, then phonologisation

will create four times as many new Type II patterns as Type IV, despite the fivefold inductive bias in the

opposite direction. That hypothesis could be tested by looking for discrepancies between what is available for

phonologisation and what actually gets phonologised. That could be done across languages, by comparing

phonetic typology with phonological typology to see if certain phonological patterns are systematically

underrepresented in relation to their phonetic precursors (Cole & Iskarous, 2001; Hombert, Ohala & Ewan,

1979; Moreton, 2008; Myers & Padgett, 2014), or across time, by comparing known precursors with their

phonologised forms to see if phonologisation is unfaithful to precursors in systematic ways (Hayes 1999).

10.3 Phonotactic learning as concept learning

The present results give no reason to think that implicit or explicit phonotactic learning in the laboratory

is anything but a special case of domain-general concept learning, using domain-general processes which

only appear to be unique because the phonological stimulus space has properties rarely studied elsewhere,

such as many pattern-irrelevant features (Section 9) or multiple instances of the same feature within a single

stimulus (Moreton, 2012, 167–168)). The conclusion of Section 9, that learners in the present experiments

seemed to be serially testing candidate features for relevance, thus supports models of concept learning

in which features are serially tested for relevance, such as the mental-model theory (Goodwin & Johnson-

Laird, 2011,1), RULEX (Nosofsky et al., 1994b), or, within phonology, the proposal of Durvasula & Liter

(2020, 210), over models in which single- and many-feature candidate rules are tested simultaneously, such

as Rational Rules (Goodman et al., 2008).

However, the domain-specificity or otherwise of learning in phonology is a very large question that will

not be settled by a handful of experiments. We therefore urge researchers to investigate more parallels or

differences between phonological and non-phonological learning. Clear and convincing evidence of substantive

bias would argue for a special status for phonological learning, but there are many other avenues to explore.

Do the biases seen in the acquisition and use of non-linguistic patterns show up in analogous phonological-
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learning experiments? Do they affect natural first- or second-language acquisition, or leave their imprint

on natural-language typology? Within language, is phonological learning biased in a different way from

morphological, lexical, or syntactic learning? These questions can only be answered by thoroughgoing

comparative study of inductive biases in analogous problems across domains (Moreton et al., 2017).
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