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Implicit and explicit processes in phonotactic learning

Elliott Moreton and Katya Pertsova∗

Recent years have seen a proliferation of adult phonological-learning studies
(“artificial-language” experiments) employing a wide array of experimental tasks,
instructions, and materials (reviewed in Moreton & Pater 2012a,b), in the hope of
gaining experimental access to the inductive processes underlying first- or second-
language acquisition. But there has been little investigation into what is actually
going on in these experiments. Do different experimental situations engage differ-
ent learning processes? If so, do those processes have different inductive biases?
How are they related to the processes involved in L1 and L2 acquisition? Answers
to these questions have implications for both methodology in particular, and cog-
nitive science in general.

Studies of non-linguistic (mainly visual) pattern learning have led psychol-
ogists to hypothesize two concurrent learning processes that have different prop-
erties and that are facilitated by different experimental conditions (Ashby et al.,
1998; Love, 2002; Maddox & Ashby, 2004; Smith et al., 2012). Here we will
call them the explicit system and the implicit system. The explicit system is ef-
fortful, conscious, abrupt, and rule-based (e.g., it can be modelled as serial testing
of featurally-simple hypotheses); it demands focused attention and working mem-
ory, and its use is facilitated by training with right/wrong feedback, instructions
to seek a rule, and the use of easily verbalizable stimulus features. The implicit
system is effortless, unconscious, gradual, and cue-based (i.e., it can be modelled
as weight update on an array of property detectors); it does not need attention
or working memory, and its use is facilitated by training without feedback, in-
structions that do not mention rules, and non-verbalizable stimulus features. This
proposal is one manifestation of a more general idea in psychology (reviewed by
Osman 2004; Evans 2008; Newell et al. 2011). The two systems also differ in
sensitivity to different pattern structures (see below).

This paper presents two experiments. Experiment 1 asks whether implicit
and explicit processes are available for phonological learning, and, if so, whether
they are facilitated by the same conditions as in non-linguistic pattern learning.
Experiment 2 asks whether the two processes differ in sensitivity to different pat-
tern types in the same way as in non-linguistic learning. This study contributes
to a larger program, the comparative study of inductive learning across domains
(Pertsova, 2012; Pater & Moreton, 2012; Moreton, 2012; Moreton et al., in press).
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1 Experiment 1: Implicit and explicit learning of single-feature patterns

Indicators of explicit rather than implicit learning include: self-report of rule-
seeking, rule-finding, or rule-use (Bruner et al., 1956; Ciborowski & Cole, 1972);
ability to state the correct rule (Ciborowski & Cole, 1973); an abrupt jump in
the learning curve (Smith et al., 2004) and abrupt acceleration in response times
(Haider & Rose, 2007) when the solution is found; and a bi-modal distribution of
performance between “solvers” who are close to perfect, and “non-solvers” who
are close to chance (Love, 2002; Kurtz et al., 2013).

The experimental conditions which facilitate explicit over implicit learing in
non-linguistic experiments include training with feedback (Love, 2002), instruc-
tions to seek a rule (Love, 2002; Lewandowsky, 2011; Kurtz et al., 2013), and the
use of perceptually-separable, easily-verbalizable features (Nosofsky & Palmeri,
1996; Kurtz et al., 2013). The strategy of Experiment 1 is to manipulate these
conditions in a phonotactic-learning experiment, and see if they have the same
effect on the indicators as they have in non-linguistic experiments.

1.1 Stimuli, methods, and participants

Participants were recruited for a study on learning grammatical gender in an
artificial language. The experiment was run over the World Wide Web via the
Amazon Mechanical Turk platform (Sprouse, 2011). Participants were required
to have completed at least 1000 previous Mechanical Turk assignments, with an
approval rate of at least 95%. Each stimulus Word consisted of a picture paired
with an audio nonword of English (recorded by a native speaker of American
English). The nonwords were vowel-initial, di- or trisyllabic, with stress on the
first or second syllable: {V C@C, V C@C, @CV C, @CV C}. Consonants were
voiced or voiceless, labial or coronal, fricatives or stops: {p b t d f v s z}. Stressed
(non-schwa) vowels were front or back, high or low, tense or lax: {i I e E u U o
O}. Pictures were 160 images of familiar objects, 20 in each of the cells defined
by the features edible/inedible, long (I-shaped)/compact (O-shaped), large (foot-
sized)/small (finger-sized).

For each participant, the pictures were randomly paired with audio nonwords
to make Words. Then one of the following nine phonological or semantic features
was chosen: edible/inedible, long/compact, large/small, disyllabic/trisyllabic, first/
second-syllable stress, all consonants identical/some consonants different, stressed
vowel is back/front, all consonants are stops/fricatives, all consonants are labial/
coronal. The Words were divided into positive and negative categories on the basis
of that feature, and the positive and negative categories were randomly assigned to
be “feminine” or “masculine”. The experimental procedure is illustrated in Figure
1.
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PHASE EVENTS
Initialization Welcome; sound check

Instructions

No-Feedback Feedback
Learn to recognize feminine-
(masculine-)gender words in
an artificial language

Learn to tell feminine-gender
words from masculine-
gender ones; look for rule
that will let you get it 100%
right

Training See picture, hear word; all are
feminine (masculine). 4 rep-
etitions of 32 Words.

See and hear two Words,
one feminine, one masculine.
Choose the one you think
is feminine (masculine); hear
right/wrong feedback. 32 f.
Words and 32 m. Words, re-
combined from trial to trial;
up to 128 trials. Stopped
early if 4 consecutive perfect
blocks of 4 (“met criterion”).

Test

See picture, hear correct word and foil; choose one; no
feedback. 32 trials, all new stimuli.

Debriefing Questionnaire about learning strategy

Figure 1. Procedure of Experiments 1 and 2.
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One part of the questionnaire asked: “How did you approach the learning task
(the first part of the experiment)? Please choose all that apply: �Went by intuition
or gut feeling. � Tried to memorize the words. � Tried to find a rule or pattern.
Please describe what you did in as much detail as you can. If you looked for a
rule, what rules did you try?” (followed by a text box for a free-form response). A
subsequent question asked, “How did you approach the test (the second part of the
experiment)? Please choose all that apply: � Chose words that sounded similar
to the words I’d studied. � Chose words that sounded different from the words
I’d studied. � Chose words that fit a rule or pattern. Again, please describe what
you did in as much detail as you can. If you used a rule, what was it?” (followed
again by a text box).

A total of 211 participants completed the experiment. Of these, 20 were ex-
cluded from analysis (5 reported a non-English L1, 7 reported taking written notes,
6 reported choosing test-phase responses that were maximally unlike what they
were trained on, 2 fell below the minimum performance criterion of at least 10
correct answers in the test phase), leaving 191 valid participants (98 No-Feedback
and 93 Feedback).

1.2 Results

For each of the 211 participants, in random order, their responses to the
open-ended training-phase and test-phase strategy questions were displayed to the
experimenter simultaneously, together with a statement of the correct rule (e.g.,
“masculine⇔ disyllabic”), but with no information about whether the participant
was in the Feedback or No-Feedback condition. The first author scored these re-
sponses together as true or false for the following: (1) Did they state a rule, i.e.,
a connection between their responses and some public property of the stimulus.
(2) Did they state the correct rule, i.e., one that would allow a correct decision in
every case? (3) Did they state a rule that was partly correct, i.e., it would allow
better than chance performance, assuming that performance was at chance on any
cases not addressed by the rule? Scoring was repeated three weeks later in a dif-
ferent random order. Agreement between the two scoring sessions was 93.5% for
(1), 95.9% for (2), and 99.5% for (3).

Effect of experimental condition on learning strategy: Participants in the
Feedback condition were significantly more likely than those in the No-Feedback
condition to report seeking a rule in training by checking the “Tried to find a rule
or pattern” box, and to report using a rule in the test phase by checking the “Chose
words that fit a rule or pattern” box (Table 1).

Hence the No-Feedback/Feedback manipulation affected self-reported rule
seeking and rule use. However most people reported rule-seeking, and nearly
half reported rule-use, even in the No-Feedback condition where they were not
explicitly instructed to do so. No-Feedback participants were significantly more
likely than Feedback participants to report memorizing individual stimuli (which
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recurred in the training phase, but not in the test phase, see Figure 1), but there
was no significant difference in self-report of using intuition (Table 2).

Table 1. Report of rule-seeking in training phase, and rule-use in test phase,
as a function of training group, Experiment 1.

Sought rule
Training group FALSE TRUE
No-Feedback 42 56
Feedback 17 76

Reported rule use
Training group FALSE TRUE
No-Feedback 56 42
Feedback 36 57

χ2 = 12.375, df = 1, p = 0.0004351 χ2 = 5.7768, df = 1, p = 0.01624

Table 2. Report of stimulus memorization and use of intuition as a function
of training group, Experiment 1.

Memorized
Training group FALSE TRUE
No-Feedback 53 45
Feedback 71 22

Used intuition
Training group FALSE TRUE
No-Feedback 67 31
Feedback 54 39

χ2 = 9.4301, df = 1, p = 0.002135 χ2 = 1.7604, df = 1, p = 0.1846
Effect of learning condition on explicit solution: Besides subjective self-

report, training condition also affected the objective measure of whether a par-
ticipant was able to state a wholly- or partially-correct rule: Feedback participants
were significantly more likely to do so than No-Feedback participants (Table 3).

Table 3. Statement of wholly- or partly-correct rule as a function of training
group, Experiment 1.

Correct rule
Training group FALSE TRUE
No-Feedback 84 14
Feedback 66 27

At least partly-correct rule
Training group FALSE TRUE
No-Feedback 78 20
Feedback 56 37

χ2 = 5.3116, df = 1, p = 0.02118 χ2 = 7.6566, df = 1, p = 0.005656

Uni- vs. bimodality of generalization performance: The test-phase perfor-
mance of participants who stated a (correct or incorrect) rule was bimodally dis-
tributed in both the Feedback and the No-Feedback conditions, with one mode
near 1 (corresponding to those who stated the correct rule) and a much smaller
mode near 0.5 (corresponding to those who stated an incorrect rule) (Figure 2, left
side). This is consistent with what Kurtz et al. (2013) found for visual pattern-
learning in situations that encourage rule use. Feedback participants who stated
no rule showed unimodally-distributed performance with a peak near 0.5. Thus, in
the Feedback condition, high generalization performance was almost exclusively
confined to correct rule-staters.

In the No-Feedback condition, however, generalization performance was bi-
modal for non-rule-staters as well, again with modes near 1 and 0.5 (Figure 2, right
side). This was unexpected, as bimodality is associated with rule learning. Closer
inspection found that the two modes in fact corresponded to different features.
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For 9 of the 19 near-perfect (> 90% correct) non-rule-stating No-Feedback par-
ticipants, the pattern hinged on whether the consonants were fricatives vs. stops,
a feature which participants found easy to recognize but hard to verbalize (e.g.,
“just went with words that ended with the same sound that the other words ended
with”). High generalization performance in the No-Feedback condition could thus
be achieved with or without explicit rule-stating.1
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Figure 2. Uni- vs. bimodality of test-phase performance, Experiment 1.

Abruptness of solution: In the Feedback condition, the response to each train-
ing trial is correct or incorrect, making it possible to monitor progress during
training. For each “solver” (Feedback participant who eventually reached the 16-
consecutive-correct criterion), their last erroneous response before the 16-trial cri-
terion run was located. The 16 trials preceding but not including the last error,

1The results are similar if the data is broken down by self-reported rule-seeking or self-reported
rule-use rather than by rule-stating.

6



and the 16 trials following it, were extracted and divided into 4-trial blocks. Pro-
portion correct was calculated for each of those blocks. If a block was incomplete
because the last error occured before Trial 16, the proportion for that block was
computed over its existing trials. If a whole block was missing for the same rea-
son, no value was recorded for it. These individual means were then averaged
together across participants (ignoring missing blocks) to yield the learning curves
in Figure 3, which shows that improvement to criterion was more abrupt for those
who stated the correct rule than for those who did not.
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Didn't state correct rule (N=45)

Stated correct rule (N=26)

Figure 3. Backwards learning curves for the Feedback condition of Experi-
ment 1. See text for details.

The difference in abruptness was tested by fitting a mixed logistic-regression
model to the last 16 trials preceding each solver’s last error (or fewer than 16, if
the participant was a faster solver). The dependent variable was correct (1) vs.
incorrect (0) on each trial. The independent variable was whether the participant
was scored as correctly stating the rule (1) or not (0). There was a random in-
tercept for each participant. The fitted model is shown in Table 4. The effect of
Stated correct was significantly negative, i.e., just before they reached criterion,
participants who stated the correct rule had worse performance than those who did
not state the correct rule.
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Table 4. Fixed effects part of logistic regression model for performance on
last 16 pre-criterion trials by solvers in Experiment 1.

Estimate SE z Pr(> |z|)
Intercept 1.3195 0.1467 8.997 < 2× 10−16 ***
Stated correct −0.5574 0.2568 −2.170 0.03 *

Response-time acceleration. Figure 4 shows that in the training phase of the
Feedback condition, response times for correct responses accelerated after the last
error for solvers who stated the correct rule, but not for solvers who didn’t.
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Figure 4. Response latencies for correct responses by Feedback solvers in the
training phase of Experiment I, aligned to last error. Each small dot is one
participant’s log response time; large dots are means of log response times.

The acceleration after the last error was tested using a linear mixed-effects
model in which log trial duration was the dependent variable. The independent
variables were After last error (coded as−1 or +1 for trials before or after the last
error), Stated correct (1 if the participant stated the correct rule, else 0), their in-
teraction, and the log of the absolute trial number (to take into account the overall
RT acceleration with practice). There was a random intercept for each participant.
The software was the lmer function in R (Bates et al., 2015).

The significant interaction After last error× Stated correct (Table 5) confirms
that those who stated the rule correctly experienced an acceleration in RTs after
their last error. That could be because before the last error, they were seeking or
testing a rule (slowly and effortfully), but after the last error they were applying a
rule (quickly).
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Table 5. Fixed effects part of general linear model for response times on
correct trials by solvers in Experiment 1.

Estimate SE df t Pr(> |t|)
Intercept 2.759 0.05166 180 53.418 < 0.001 ***
Log trial number −0.166 0.00903 4518 −18.407 < 0.001 ***
After last error −0.004 0.01033 4600 −0.369 0.7121
Stated correct −0.077 0.06949 70 −1.108 0.2717
After last error ×

Stated correct −0.046 0.01832 4617 −2.215 0.0268 *

1.3 Interim summary: Experiment 1

Pattern-learning in Experiment 1 shares some important properties with non-
linguistic pattern-learning. Implicit and explicit processes are used by learners
in both the No-Feedback and the Feedback condition. Changing the experimen-
tal task and instructions influences but does not determine the strategy; i.e., it is
unsafe to assume that a particular experimental paradigm elicits only one kind of
learning. Feedback was associated with more rule seeking, less report of intuition
and memorization, and better performance. Solvers in the Feedback condition
who stated the correct rule also displayed signs of rule- rather than cue-learning:
an abrupt “aha” moment, followed by the speeding up of responses.

2 Experiment 2

Do implicit and explicit processes differ in their sensitivity to different pat-
terns? Non-linguistic research has centered on “Type II” and “Type IV” patterns,
in the terminology of Shepard et al. (1961) (Figure 5).

• N
• N

◦ M
◦ M

• N
• N

◦ M
◦ M

II IV

Figure 5. Top panels: Structure of patterns in a cube-like space defined by
three binary dimensions. Bottom panels: Patterns instantiated in dimensions
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black/white, circle/triangle, large/small. After Shepard et al. (1961).

The usual findings are that Type II (if-and-only-if) is easier than Type IV
(family-resemblance) in terms of trials to criterion and total number of errors dur-
ing training, and that switching from explicit to implicit learning reduces perfor-
mance on Type II relative to Type IV (Love, 2002; Kurtz et al., 2013). Several
proposals have been advanced in the psychology literature to account for the Type
II > Type IV advantage, based on the idea that (a) explicit rule learning is bi-
ased towards hypotheses that involve fewer features, and (b) only two features are
relevant for Type II, while three are relevant for Type IV (for reviews see Pape
et al. 2015; Moreton et al. in press). Experiment 2 therefore asks whether explicit
processes also facilitate learning of Type II over Type IV in phonology.

2.1 Stimuli, methods, and participants

Of the six phonological properties in Experiment 1, we chose three that had
elicited high test-phase performance in Experiment 1 (two/three syllables, labi-
als/alveolars, fricatives/stops) as the three binary dimensions defining the stim-
ulus space. Participants, recruited as in Experiment 1, were assigned to one of
six groups defined by (Type I, Type II, Type IV) × (No-Feedback, Feedback).
167 people participated. Exclusions were: 6 reported non-English L1, 8 reported
choosing test-phase responses that were maximally unlike training, 14 reported
note-taking, 2 fell below the 10-out-of-32 criterion. That left 137 valid partici-
pants, between 16 and 28 in each of the 6 cells. Questionnaire responses were
scored by the two authors. Inter-rater reliability was at least 89% for each ques-
tion. Disagreements were resolved by the first author, comparing raters’ notes.
Since Type II and Type IV rules were hard to completely verbalize, a stated rule
was scored as correct (gave correct answers for every stimulus), partly correct
(gave correct answers for more than half of stimuli), or incorrect (other).

2.2 Results

For space reasons, only the Type II and Type IV conditions are analyzed here.
(The Type I condition’s results followed the pattern of Experiment 1, though with
less statistical power owing to the smaller sample.)

Trials to criterion and total training errors. Unlike in the non-linguistic
literature, in the Feedback condition, solvers reached criterion significantly ear-
lier for Type IV than for Type II (Wilcoxon Mann-Whitney rank-sum test, Z =
2.0392, p = 0.04143), and made significantly fewer errors during training (Z =
2.0671, p = 0.03872). There were no significant effects of, nor interactions with,
rule-seeking or rule-stating.

Generalization: Non-linguistic studies have found that when explicit rule-
seeking is encouraged, the Type II advantage over Type IV increases (Love, 2002;
Kurtz et al., 2013). In the test phase of Experiment II, however, the opposite
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happened: Type IV was better than Type II, and the Type IV advantage was greater
for those who reported seeking a rule in the training phase. The statistical analysis
(using the glmer function in the lme4 package of R, Bates et al. 2015) is shown
in Table 6. The dependent variable is correct/incorrect response (1/0). The fixed
effects are Sought (=1 if reported rule-seeking, else 0), IV (= 1 for participants
in Type IV, 0 for Type II), No-Feedback (=1 for No-Feedback participants, 0 for
Feedback participants). A random intercept was included for each participant.
The significant and positive Sought×IV interaction, with the non-significant main
effects of these two variables, means that in the Feedback Type IV condition, but
not in the Feedback Type II condition, rule-seeking significantly increased the
probability of a correct response.

Table 6. Fixed effects part of logistic-regression model for test phase of Ex-
periment 2.

Estimate SE z Pr(> |z|)
(Intercept) 0.8810 0.4100 2.149 0.0317 *
Sought −0.1454 0.4584 −0.317 0.7511
IV −0.6338 0.5329 −1.189 0.2343
No-Feedback −0.0140 0.5554 −0.025 0.9799
Sought:IV 1.4725 0.6085 2.420 0.0155 *
Sought:No-Feedback 0.1658 0.6415 0.258 0.7960
IV:No-Feedback 0.5652 0.7186 0.786 0.4316
Sought:IV:No-Feedback −1.1190 0.8868 −1.262 0.2070

2.3 Discussion: Experiment 2

Contrary both to the results of most non-linguistic experiments, and to the
predictions of models that account for them, performance was better on Type IV
than Type II, and explicit rule-seeking was associated with an increase in the Type
IV advantage. A possible explanation is as follows: The two or three relevant
features in Exp. 2 had to be discovered amongst seven or six irrelevant ones
(“attribute identification”, Haygood & Bourne 1965). Suppose rule-seekers do
that by sequentially testing individual features for cue validity. Each of the three
Type IV features, by itself, allows 75% correct responding. But for Type II, a
single relevant feature is useless — wrong 50% of the time — and so cannot be
distinguished from an irrelevant feature. That makes it harder to find the solution
incrementally.2,3 This conjecture is supported by the relation between the Type

2It is not the case that Type IV participants were using only single-feature rules. If many partic-
ipants were using a partly-correct single-feature rule, then the test-phase responses should have had
a mode at 75% correct. In fact, the distribution of responses in both the Feedback and No-Feedback
conditions had a valley near 75%, with modes above and below.

3Type IV is linearly separable in terms of the features, while Type II is not, but linear separability
does not appear to be at the root of the Type IV advantage: In a study using isomorphic phonotactic
and visual patterns, Type II also proved harder than a three-feature non-linearly-separable pattern as
well (Moreton et al., in press).
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conditions and rule-seeking and -stating, shown in Table 7.

Table 7. Report of (at least partly) correct rule in Experiment 2 as a function
of Type and self-reported rule-seeking.

Type II Type IV
Stated (some) correct Nonseekers Seekers Nonseekers Seekers
FALSE 10 30 16 13
TRUE 1 4 0 15

As shown in Table 7, the only group in which most participants reported a
rule that was at least partly correct was rule-seekers in the Type IV condition. In
the other three groups, almost no one reported such a rule. (The seeker/nonseeker
difference within the Type IV group was significant by Fisher’s exact test, p =
0.001897; likewise, the II/IV difference within the seekers was also significant by
the same test, p = 0.0006718).

3 General discussion

Experiment 1 found evidence that participants in “artificial-language” experi-
ments can use (at least) two qualitatively distinct learning processes, explicit rule-
seeking and implicit intuitive learning. The experimenter’s choice of task and
instructions can favor the use of either process, but does not guarantee that one
process will be used exclusively. Explicit and implicit learners differ in multiple
ways, as measured by self-report of strategy, explicit rule statement, abruptness of
learning curves, response-time acceleration, and uni- vs. bimodality of general-
ization performance. Experiment 2 found that differences in learning strategy can
lead to difference in relative pattern difficulty.

Thus, that there can be two sub-populations of learners doing different things
in the same experiment, whose behaviors may cancel each other out when ag-
gregated. Disaggregation may therefore reveal or strengthen effects which have
hitherto been weak or hard to replicate (e.g., the elusive evidence for “phonetically
substantive” inductive bias, Moreton & Pater 2012a,b).

Experiment 2 also found that rule-seeking is associated with an increase in the
IV > II advantage, apparently because it is easier to find the relevant features
one by one in Type IV. This is a new finding, unexpected under psychological
models of rule-based learning which favor patterns that depend on fewer features
(see references above). Feature-minimizing inductive biases have also been inde-
pendently proposed in phonology (e.g., Chomsky & Halle 1968, 168, 221, 331,
334; Bach & Harms 1972; Pycha et al. 2003; Gordon 2004; Hayes et al. 2009);
they, too, are challenged by the present results. Constraint-based models do exist
which predict IV > II (Gluck & Bower, 1988; Pater & Moreton, 2012; Moreton
et al., in press), but they do not predict an amplifying effect of deliberate rule-
seeking. New modelling ideas are clearly needed.

Explicit learning is often regarded as a contaminant (“using a strategy”, “solv-
ing crossword puzzles”, etc.), and these results may be of interest to experimenters
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desiring to minimize it. However, what adult “artificial-language” studies resem-
ble most is the early stages of second-language acquisition, which can make use of
both implicit and explicit processes (reviewed in Lichtman 2012); hence, explicit
phonological learning is also worth studying in its own right.
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