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1. Introduction: Language learning as pattern learning

Knowledge of language is largely knowledge of featurally-defined patterns, and language
learning is, to a great extent, pattern learning. A simple example is shown in (1), where
the same logical pattern is instantiated by different pairs of phonological, morphological,
and visual features. The recognition of this commonalty invites many questions. How does
the formal structure of a linguistic pattern affect its learnability in the lab? Does pattern
structure affect learning alike or differently in different inductive domains, such as morpho-
logical, phonological, and non-linguistic patterns? What implications do formal-structure
effects have for the architecture of learning models? Does pattern structure affect learning
in the lab the same way it affects typological frequency across natural languages?

(1) Instantiation of the same exclusive-or pattern in three domains.

a. Phonology
Consonant

Vowel short long
short *lam lamm
long la:m *la:mm

b. Morphology
Number

Case sing. pl.
Acc. mur mur-s
Nom. mur-s mur

c. Non-linguistic game
Shapes

Colors One Many
One Illegal Legal
Many Legal Illegal

Swedish: Either the
vowel or the consonant of
a closed stressed syllable
is long, but not both
(Löfstedt 1992).

Old French: /-s/ is at-
tached to an o-stem
noun if it is nominative
or plural, but not both
(Luquiens 1909, §289).

Qwirkle: In a row of tiles,
either the colors or the
shapes must differ, but
not both (Ross 2006, 2).

∗The work reported here is part of a collaboration with Joe Pater of UMass-Amherst. It has has benefited
from discussions with many colleagues, especially Jen Smith (UNC-Chapel Hill), and from audiences at the
Chicago Linguistic Society and the Manchester Phonology Meeting in 2012. We are grateful to Jessica Slavic
for assistance with subject-running. All errors are the exclusive responsibility of the authors. This work was
funded in part by a grant from UNC-Chapel Hill to the second author.
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We are interested in the hypothesis that linguistic patterns which differ in formal struc-
ture also differ systematically in how hard they are to learn. This hypothesis has been
extensively studied by psychologists interested in the learning of patterns defined on non-
linguistic features. One finding of these studies has been a hierarchy of increasing difficulty
for a particular set of patterns defined on three logical dimensions. The hierarchy is shown
in (2), instantiated by the visual dimensions of color, shape, and size.

(2) The Shepard hierarchy (Shepard et al. 1961).
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The difficulty order I > II > {III, IV,V} > V I has been partially or wholly replicated
many times in supervised learning of visual categories (Shepard et al. 1961, Nosofsky et al.
1994, Feldman 2000, Love 2002, Smith et al. 2004), and competing models of general pat-
tern learning are often evaluated on their ability to reproduce it (Anderson 1991, Kruschke
1992, Nosofsky et al. 1994, Love et al. 2004, Feldman 2006). The most successful models,
by this measure, have been rule-based models in which the learner tests discrete rule-like
hypotheses in increasing order of the number of crucial features used in each hypothesis
(Nosofsky et al. 1994, Goodman et al. 2008). Cue-based models, which learn by gradually
updating weights on pre-specified property detectors, have been unsuccessful in matching
the Shepard order. In particular, they incorrectly predict Type IV to be easier than Type
II, because they are sensitive to whether a category is linearly separable in feature space
(Medin and Schwanenflugel 1981, Gluck and Bower 1988).

Observed difficulty order can therefore be informative about which kind of learning
processes the learner is using. In this paper, we are particularly interested in the hypothesis
that phonological learners are using cue-based processes, because cue-based models that
are very similar to psychological models have been independently proposed in linguistics
for phonological learning (e.g., Boersma 1998, Goldwater and Johnson 2003, Jäger 2007,
Hayes and Wilson 2008, Pater and Moreton 2012). For this reason, we focus on three
empirical questions:

1. Is the classical Shepard order (I > II > {III, IV,V} > V I) also found in a typical
short-term phonological-learning (“artificial-language”) experiment? (Preview: It is not; in
particular, Type II turns out to be harder than Types III and IV.)

2. Is the Shepard order restored when the phonological stimuli are replaced with visual
analogues? (Preview: It is not; Type II is still harder than higher types)

3. Is the Shepard order found in natural-language phonological patterns? (Preview: It
is.)
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These findings support the hypothesis that phonological learning is cue-based, and that
it shares this property with some kinds of visual learning. They invite further inquiry into
the relation between phonological learning in the lab and typological frequency in natu-
ral languages, and into the conditions favoring rule-like vs. cue-like learning (Kurtz et al.
2013).

2. Experiment 1: Pattern structure and difficulty in phonological learning

Previous studies of phonological learning have compared Type I with Type II, or Type II
with Type VI. They have invariably replicated the I > II and II > V I orders (see More-
ton and Pater 2012a,b for a review). Experiment 1 compared all 6 types using a typical
“artificial-language” methodology. Stimuli were MBROLA-synthesized C1V1C2V2 words
with inventory /t k d g/ /i u æ O/, used previously by Moreton (2012). There were 256
possible words, as shown in (3).

(3) Stimulus design for Experiment 1.
Stimulus segment

σ1 σ2
Feature C1 V1 C2 V2

voiced ± ±
Coronal ± ±
high ± ±
back ± ±

Consonants Vowels
k t g d æ O i u

– – + +
– + – +

– – + +
– + – +

Participants were 144 paid volunteers from the authors’ university community, self-
screened for normal hearing and native English. (An additional 8 participants were dropped
from the study because of native language, equipment failure, or failure to meet a criterion
of at least 10 correct responses.) Each participant was randomly assigned to one of Types
I–VI (24 participants per Type). For each participant, 3 of the 8 stimulus features were
randomly chosen, then randomly mapped onto the 3 logical features defining the Shepard
type to define a “language”. Examples are shown in (4). Since the patterns were randomly
generated, with deliberate disregard of typological frequency and phonetic motivation, they
were almost sure to be “crazy rules” (Bach and Harms 1972, Anderson 1981). This was in-
tentional, since the focus of the study is purely structural effects on phonological learning.

(4) Instantiation of Shepard patterns in phonological stimuli: examples.
TYPE I: C1 is voiced
digu, gada, dika, gugu, . . .
TYPE II: C1 is voiced iff V2 is back.
digu, tægi, kagæ gada, . . .
TYPE IV: At least two of: C1 is voiced, V2 is high, V2 is back
kaku, digu, guki, dæka, . . .

Participants were told they would learn to pronounce words in an artificial language,
and then be tested on ability to recognize words in that language. They were familiar-
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ized with the pattern by listening to and repeating aloud 32 randomly-chosen pattern-
conforming stimuli 4 times over. Then, in the test phase, they heard 32 randomly-chosen
pairs of new stimuli (one pattern-conforming, one not) and tried to identify the one that
was “a word in the language you were studying”.

(5) Individual participant results from Experiment 1. Each plotting symbol represents
one participant (N = 144). The vertical axis is the proportion of “correct” (i.e.,
pattern-conforming) choices in the test phase. Plotting symbols are explained in
text.
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Results, shown in (5), clearly do not conform to the classic Shepard difficulty hierarchy.
Performance on Type II patterns is, on average, worse than on Types III, IV, and V. The
overall numerical order of the means for the types is I > IV > III > V > II > V I. The
statistical analysis, shown in (6), used Type II as the reference category. The other Type
conditions were dummy coded (e.g., for a participant in the Type III condition, the factor
III was 1, and the variables I, IV, V, and VI were 0).

Type II patterns involved only two features, and it could happen that both of those
features belonged to the same feature genus (e.g., they were both voicing features), so
that the pattern was harmony or disharmony. Such patterns are often easier to learn than
other Type II patterns (see review in Section 3.1 of Moreton and Pater 2012a), so a factor
AllSameGenus was set to 1 for the 6 harmony/disharmony patterns (plotted with a “M” in
(5)), 0 for all others.

Another factor, AllSameSeg, was set to 1 for patterns in which all of the critical features
occurred in the same segment, i.e., all of the Type I patterns and 6 of the Type II patterns
(plotted with a “+” in (5)). Finally, two nuisance factors, Redup and CorrFirst, were
included to model out variance caused by participants’ aversion to reduplicated stimuli and
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their preference for the first of the two-alternative forced-choice stimuli (Moreton 2008,
2012). A mixed-effects logistic-regression model was fitted with the lmer function of the
lme4 package in R 2.7.1.

The analysis confirmed that Type II performance was significantly below performance
on Types III, IV, and V, and in fact did not significantly exceed performance on Type VI.
Thus, pattern structure affected learning in this experiment, but not in the same way that it
does in the classic Shepard experiments.

(6) Fixed-effects part of the mixed-effects logistic-regression model of participant
data from Experiment 1 (4608 responses from 144 participants; log-likelihood =
−2879). Type II is the reference category.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.12800 0.14337 0.893 0.371990

I 0.12644 0.23434 0.540 0.589497

III 0.47203 0.17323 2.725 0.006432 **

IV 0.63402 0.17423 3.639 0.000274 ***

V 0.38985 0.17266 2.258 0.023951 *

VI -0.06131 0.17119 -0.358 0.720248

AllSameSeg 0.69359 0.25150 2.758 0.005819 **

AllSameGenus 0.11085 0.24330 0.456 0.648652

Redup -0.77233 0.10142 -7.615 2.63e-14 ***

CorrFirst 0.27397 0.06348 4.316 1.59e-05 ***

3. Experiment 2: Visual analogues

Do the results of Experiment 1 mean that phonological learning is inherently different
from visual category learning? Not necessarily: There are findings in the literature that
other factors can cause the classic II > IV advantage to disappear or reverse even in visual
pattern learning (Nosofsky and Palmeri 1996, Love 2002, Smith et al. 2004, Kurtz et al.
2013). Experiment 1 was designed to be like other “artificial-language” experiments, which
in turn are designed to be like natural-language learning — and which therefore differ from
the classic Shepard experiments in several ways, as shown in (7).

An alternative explanation for the II/IV reversal is that participants could reason ex-
plicitly about the features of the visual stimuli used in the Shepard experiments, but not
about phonological features. Previous research shows that conditions that favor explicit
learning can favor Type II over Type IV (Love 2002, Smith et al. 2004, Kurtz et al. 2013).
Experiment 2 asks whether the II/IV reversal observed in Experiment 1 is reduced or
eliminated when the phonological stimuli are replaced by closely analogous visual stim-
uli, which can be reasoned about explicitly. (For previous work on visual analogues of
artificial-language experiments, see Finley and Badecker 2010, Lai 2012.)

Our stimuli were 8-feature fancy cakes, organized into layers (' syllables) and body vs.
decoration (' vowels and consonants), as shown in (8). Each of the 256 possible stimulus
words thus has an corresponding cake, as shown in (9).
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(7) Differences between Exp. 1, Exp. 2, and the classic Shepard-like experiments
Classic Shepard Phonological learning

(incl. Exp. 1)
Exp. 2

Visual domain Phonological domain Visual domain
Easily verbalizable fea-
tures (“red triangle”)

Features hard for naı̈ve
participants to verbalize
(“voiceless velar”)

Easily verbalizable fea-
tures (“pink icing”)

Overt instructions to
learn a pattern

No mention of pattern
in instructions

No mention of pattern
in instructions

Supervised learning Unsupervised learning Unsupervised learning
3 features, all critical 8 features, 3 critical and

5 distractors
8 features, 3 are critical
and 5 distractors

No within-stimulus
structure

Stimuli have internal
prosodic and feature-
tier structure

Stimuli have analogues
of prosodic and feature-
tier structure

(8) Design of visual stimuli for Experiment 2, showing isomorphism with phonologi-
cal stimuli of Experiment 1.

Stimulus segment
σ1 σ2

Feature C1 V1 C2 V2

voiced ± ±

Coronal ± ±

high ± ±

back ± ±

Nonlinguistic analogues
Bottom layer Top layer

Feature Candy Body Candy Body
Diamond ± ±
candy
Blue ± ±
candy
White ± ±
icing
Brown ± ±
batter

(9) Examples of corresponding visual and phonological stimuli in Exps. 1 and 2.

[dikæ] [kOgO] [kiki] [tugæ]

Participants were told that they would be learning to recognize “a particular style of
fancy cake”. They would first study cakes made in this style, then they would be “tested
on how well you can recognize them.” In the familiarization phase, participants viewed
32 pattern-conforming cakes in random order 4 times (see 10). They could look at each
cake as long as they liked before going on to the next one. The test phase consisted of 32
two-alternative forced-choice trials, each with one new pattern-conforming cake and one
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non-conforming cake (see 11). There were 144 participants from the same population as in
Exp. 1 (9 more were dropped due to equipment failure, four for native language or failure
to meet criterion).
(10) Familiarization phase in Experiment 2

Visual mask Blank screen Positive example

250 ms 250 ms > 2000 ms

(11) Test phase in Experiment 2
Fixation point Blank screen 2AFC option Visual mask

1000 ms 250 ms 2000 ms 250 ms
Blank screen 2AFC option Visual mask Blank screen

250 ms 2000 ms 250 ms > 250 ms

(12) Individual participant results from Exp. 2. Each point represents one participant
(N = 144). The vertical axis is the proportion of pattern-conforming choices in the
test phase. Plotting symbols are explained above, at (5).
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(13)
Fixed-effects part of the mixed-effects logistic-regression model of participant

data from Experiment 2 (4608 responses from 144 participants; log-likelihood =
−2798). Type II is the reference category.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.17460 0.17077 -1.022 0.3066

I 1.63189 0.27667 5.898 3.67e-09 ***

III 0.48629 0.20646 2.355 0.0185 *

IV 0.35651 0.20607 1.730 0.0836 .

V 0.24296 0.20586 1.180 0.2379

VI -0.05399 0.20544 -0.263 0.7927

AllSameGenus 3.94821 0.58222 6.781 1.19e-11 ***

AllSameSeg 0.21899 0.29093 0.753 0.4516

CorrFirst 0.35884 0.06437 5.574 2.49e-08 ***

Redup -0.23879 0.09933 -2.404 0.0162 *

The question was whether replacing the phonological stimuli with visual analogues
would restore the classic Shepard order. Results, plotted in (12), show that it did not. Ex-
cept for the 6 participants in the harmony/disharmony subcase (who achieved near-perfrct
performance), performance in Type II was still no better than in Types III, IV, and V. The
statistical analysis, shown in (13), bears this conclusion out: Type II performance was nu-
merically below that in Types III, IV, and V, with the comparison reaching significance for
Type III.

4. The Shepard hierarchy in phonological classes

In this section of the paper, we ask how structure affects typological frequency, and in
particular, whether pattern types which are easier in the lab are also more frequent in nature.
We addressed this question using the largest machine-readable database of phonological
patterns known to us, P-base1.93 (Mielke 2008), which contains 627 Language entries
and 9041 classes of Segments. Each entry describes a “phonologically active class”, i.e.,
one which triggers a change, undergoes a change, or figures in a static phonotactic pattern.
A typical entry is shown in (14).

We standardized minor formatting irregularities in files, but did not change any lan-
guage data. Languages were excluded if they contained anything unexpected, such as
apparent double occurrences of the same segment in inventory statements. This left 620
languages (99%) of the original database. Classes were excluded if their descriptions con-
tained anything unexpected, such as apparent double occurrences of same segment. This
left 8971 classes (still 99% of the original database).

We used P-Base’s SPE feature system (Chomsky and Halle 1968) because it uses the
standard [±high] and [±low] for vowel height. However, rather than allow the SPE conve-
nience feature [± syllabic] to figure in classes, we carried out separate analyses for conso-
nant and vowel classes: The analysis was restricted to classes whose members all had the
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same value of [±syllabic]. This eliminated 1262 classes (14.1%), leaving 2034 [+syllabic]
and 5682 [–syllabic] classes.

(14) P-base1.93 entry describing triggers of a palatalization pattern in Māori.
Language,Maori

Reference,Harlow, Ray (1996) Māori. Muenchen: Lincom Europa.

Family,AUSTRONESIAN

Location,New Zealand

Langcode,MAOR

Inventory,Core

p,t,k,f,h,i,u,m,n,N,e,o,R,a,w, ← Entire inventory
Inventory,Marginal

Trigger,/t/ → palatalized / X

Segments,i,u, ← Class involved in pattern
Maybe,

Suppose we find that 40% of patterns can be expressed as Type II, and only 20% as Type
III. Does that mean that languages somehow “favor” Type II over Type III? The comparison
we really want to make is between the typology we actually have, and the one we would
expect if learners were unbiased between Shepard classes. That would involve knowing
precisely what other typologically-effective factors would be left if we took out the learning
biases (e.g., the structure and magnitude of phonetic precursors, etc.) — which we don’t
know. Instead, our chance model created simulated classes following the procedure used
by Mielke (2004, 194): For each of the 2034 [+syllabic] and 5682 [–syllabic] classes in
P-Base, a new class of the same size was created by randomly sampling from the relevant
language’s [+syllabic] or [–syllabic] sub-inventory with uniform probability.

In order to assign classes to logical types, each “phonologically active class” in both
the original and the resampled P-Base was processed as follows to obtain all of the logical
structures it was consistent with. An expression was defined as an assignment of phonolog-
ical features to logical features that allows the positive class to be distinguished from the
rest of the inventory. An example is shown in (15).

(15) Example: Class 734, Expression 277019, Unami Delaware. This way of expressing
the class creates four filled positive cells and four filled negative cells, instantiating
Shepard Type II. “∼” means “not”; e.g., “∼[–cont]” includes both [+cont] segments
and those unspecified for [cont]. These segments are the entire recorded consonant
inventory of the language.

[–voice] ∼[–voice]
[–distr] ∼ [–distr] [–distr] ∼ [–distr]

[–cont] t p, tS, k n m
∼[–cont] s S, x, h l w,j

Most classes yielded multiple expressions. A word of caution is in order here: We do
not know which expression, if any, best describes a speaker’s mental representation of the
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class. For example, the class in (15) could also be described as “[+nas] or ([+cont] and
[–voice])”. Some of these expressions could be categorized into Shepard types, and we
analyzed those expressions of those types.

Three-feature expressions were found for 1780 of the 2034 [+syllabic] classes (87.5%)
and 3501 of the 5682 [–syllabic] ones (61.5%) in the original P-base. In the resampled
one, the corresponding numbers were 1251/2034 (61.6%) and 1136/5682 (20.0%). Each
expression which had four positive and four negative cells was then processed to see which
Shepard type it fell into. The results are shown in (16). Only a minority of the classes could
be assigned to any Shepard type at all: 337 [+syllabic] classes and 236 [–syllabic] classes
in the original P-Base, and 71 [+syllabic] and 6 [–syllabic] in the resampled one.

(16) Frequency of Shepard classes in original and resampled P-base1.93 (Mielke
2008).

I II III IV V VI
[+syll] Orig. 334 2 0 1 0 0
(V) Res. 8 4 18 5 33 3
[–syll] Orig. 219 4 7 4 3 0
(C) Res. 0 2 2 0 2 0

It is clear that Type I is greatly overrepresented in the original P-Base compared to the
resampled chance model. However, Types II–VI are so rare in the original P-Base that there
is no way to make comparisons among them. To get more resolution of the higher types,
we investigated “defective” expressions, i.e., those where the inventory of the language left
some (positive or negative) cells empty, as shown in (17).

(17) Example: Class 6, Expression 2850, Sakhalin Ainu. The language’s inventory
leaves one (negative) cell empty. The rest are consistent with Shepard Type V.

[–voice] ∼[–voice]
[+cons] ∼ [+cons] [+cons] ∼ [+cons]

[–cont] p,t,tS,k P m,n

∼[–cont] s h r w,j

In some cases, the empty cells allowed unambiguous coercion to a Shepard pattern.
(E.g., if only one cell of the 8 is empty, there is only one way to fill it in to create a Shepard
pattern.) Each expression was processed to see what Shepard types it was consistent with.
If an expression was consistent with multiple Shepard types, it was discarded. For each
class and each Shepard type, we then asked whether there was at least one undiscarded
expression for that class which was consistent with that Shepard type. Each time the answer
to that question was “yes”, we counted one more instance of that Shepard type. Thus,
a single class could count towards more than one type. A wide variety of feature-based
classes was found; i.e., the results were not dominated by a handful of very frequent classes.
Summary results are shown in (18).
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(18) For each Shepard type, this table shows the number of P-Base classes for which
there is at least one expression that is consistent with only that type.

I II III IV V VI
[+syll] Orig. 840 216 439 197 133 3
(V) Res. 79 52 322 110 251 8

Ratio 10.63 4.15 1.36 1.79 0.52 0.38
[–syll] Orig. 2469 878 3909 2202 2857 79
(C) Res. 107 100 725 379 604 35

Ratio 23.07 8.78 5.39 5.81 4.73 2.26

If the original and resampled P-Bases were sampling from the same distribution of
types, then when the two same-sized samples are pooled, a class which has a Type II ex-
pression (for instance) should be just as likely to come from the original as the resampled
P-Base. Clearly, the original P-Base samples from a distribution that produces more Shep-
ard classes, and the original/resampled odds ratios decline as Shepard type increases; i.e.,
lower-numbered types are more overrepresented than higher ones in the original P-Base
relative to the resampled one. Degrees of overrepresentation are compared in (19). For
example, in the left-hand (vowel) panel, the cell in the row labelled “I” and the column
labelled “II” contains the symbol “>” to signify that the ratio of original to resampled
P-Base vowel classes of Type I, 840 to 79, is significantly greater than the ratio of orig-
inal to resampled P-Base vowel classes of Type II, 216 to 52. The significance criterion
was p < 0.001 by 2-sample exact binomial test, after significance levels were Bonferroni-
deflated for multiple simultaneous comparisons.

(19) Pairwise significant differences for the conditional probability that a class is from
the original P-Base, based on counts in (18). “–” means no comparison, “?” means
no significant difference. See text for methods.

[+syll] (V) [–syll] (C)
II III IV V VI

I > > > > ?
II – > > > ?
III – – ? > ?
IV – – – > ?
V – – – – ?

II III IV V VI
I > > > > >
II – > > > >
III – – < > >
IV – – – > >
V – – – – ?

The typological results are in accordance with the classical Shepard hierarchy: I > II >
III, IV,V , with the additional refinement that IV, III > V (for vowel classes) or even IV >
III > V (for consonant classes). Consequently, they mismatch the results of Experiment 1
in an important way: If the typological rarity of a pattern type were directly predictable
from experimental difficulty, then Type II ought to be less frequent than Types III, IV, and
V, rather than more frequent.
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5. Discussion

Exp. 1 showed that, in a typical short-term phonological-learning experiment, the logical
structure of a pattern affects participants’ uptake of it. Performance on Type II patterns was
significantly below that on Types III, IV, and V, unlike a large body of results in visual
pattern learning. Exp. 1 is consistent with cue-based learning (Gluck and Bower 1988),
and so is compatible with some independently-motivated phonological-learning models
(Boersma 1998, Goldwater and Johnson 2003, Hayes and Wilson 2008, Pater and Moreton
2012). In Exp. 2, similar results were obtained with visual analogues; hence, we cannot say
that Exp. 1 revealed a peculiarity unique to phonological learning. On the other hand, the
P-Base survey found that Type II patterns exceeded chance frequency by significantly more
than did patterns of Types III, IV, and V. What are we to make of this? There are several
possibilities; here are three that strike us as interesting and testable.

Possibility #1: P-Base and Exp. 1 are incomparable. The P-Base classes are segment
classes, i.e., the relevant features all occur in the same segment, while Exp. 1, the rele-
vant features could occur anywhere in the CVCV stimulus word. However, part of Exp.
1 did compare Types I and II when all relevant features co-occured in the same segment,
and found no significant difference between Types I and II (this was the subcase where
AllSameSeg was 1; see discussion of (6) above). This possibility can be tested with single-
segment Shepard experiments that are more closely analogous to the P-Base survey, or by
doing typological surveys that code inter-segmental dependencies.

Possibility #2: Phonetics is structurally biased. P-Base tabulates classes that developed
in real languages exposed to the effects of phonetic channel bias, and which may therefore
be phonologizations of phonetic precursors (for a review, see Hansson 2008). Perhaps the
precursors are biased, i.e., phonetic variables may tend to covary in ways that resemble
continuous analogues of Types I and II rather than Types III and IV. This possibility awaits
research in phonetic typology.

Possibility #3: Natural language is influenced by some other kind of learning. Short-
term adult phonological-learning experiments may simulate early stages of second-language
learning better than first-languaeg acquisition. Slower processes that escape study in the lab
may yet steer acquisition and language change towards Type II and away from the three-
feature types. This possibility points towards more-naturalistic experimental studies, ob-
servational study of structural effects in acquisition and historical change, and agent-based
modelling of inductive- and channel-bias effects on typology.

Comparative study of pattern learning and typology across linguistic and non-linguistic
domains may lead to a “Grand Unified Theory”, to a recognition that culture of all sorts is
the product of special-purpose mechanisms, or to some unexpected alternative.
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