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1 Introduction

(1) Phonotactic learning:

a. In nature: Implicit knowledge of L1 phonotactics acquired starting in first year of life; effects
detectable in adults in a wide range of tasks.

b. In the lab: Knowledge of phonotactic patterns acquired rapidly from training, detectable in
wide range of tasks.

c. Subject to inductive bias, in the sense that the size of the phonotactic effect depends partly
on the content of the pattern and not just on how consistently it is instantiated in the training
data. (Artificial: Schane et al. (1974); Wilson (2003); Carpenter (2005); Wilson (2006). L1:
Zimmer (1969); Hsieh (1976); Becker et al. (2007); Hayes et al. (2008). L2: Kager et al.
(2008).)

(2) Today’s topic: “syntagmatic simplicity bias”, a learning advantage enjoyed by single-feature
over two-feature dependencies. E.g.,

[+voice]⇐⇒ [+voice] is easier than [+high]⇐⇒ [+voice]

Of interest to linguists because

a. Typologically effective—typology is skewed by it in ways that can’t be attributed to differences
in the size of the phonetic precursors available for phonologization (Moreton, 2008).

b. Formal rather than substantive; it has to do with the features themselves rather than their
real-world interpretation (Hale and Reiss, 2000).

(3) Preview:

§2 “Syntagmatic simplicity bias”: Humans learn single-feature dependencies better than two-
feature ones, regardless of what the features actually are.

§3 Connection to paradigmatic simplicity bias (natural classes): The patterns that are learned
faster are supported by multiple overlapping constraints (“wholesale” vs. “retail” constraints).

§4 Current models of constraint induction induce only retail constraints. Here’s a suggestion for
improvement; preliminary results are encouraging.

§5 Summing-up and future directions.
1I am indebted to many people for discussion of the ideas and facts presented here, especially Adam Albright,

Joe Pater, Jen Smith, Anne-Michelle Tessier, and Alan Yu. Work in §4 is part of a collaboration with Joe Pater and
Michael Becker. Thanks are also due to Abby Spears of UNC for subject-running and data-transcribing, and to Chris
Wiesen of UNC’s Odum Institute for statistical advice. Supported in part by a grant from the University Research
Council (UNC). Remaining errors are mine. Email may be addressed to moreton@unc.edu.
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2 Syntagmatic simplicity in human learners

(4) Outline: In a C1V1C2V2 stimulus,

§2.1 Height agreement (“HH”) and voice agreement (“VV”) are learned better than a dependency
between V1 height and C2 voice (“HV”). Some of that may be due to an advantage for
vowel-vowel dependencies over vowel-consonant ones. . .

§2.2 . . . but not all of it, since height-backness (“HB”) and place-voice (“PV”) dependencies are
not learned any better than HV.

⇒ Doesn’t depend on what the features actually are, just whether they are the same fea-
ture.

2.1 Experiments 1 and 2: height-height, voice-voice > height-voice.

(5) Stimuli: MBROLA-synthesized C1V1C2V2 words with inventory /t k d g/ /i u æ O/. Two
patterns:

a. “HH pattern”: Vowels agree in height.

b. “HV pattern”: V1 high iff C2 voiced.

(6) Experimental paradigm (based on Moreton (2008, Exps. 1 and 2)):

a. Study Phase: Listen to pattern-conforming words through headphones, repeat into micro-
phone. 32 words × 4 repetitions, randomized in blocks.

Pattern conformity Training condition
HH HV HH HV
+ + 16 16
+ − 16
− + 16
− −

b. Test Phase: Listen to pairs of new words, choose the one that you think is “a word of the
language you studied”. 32 pairs in two counterbalanced blocks of 16, random orders in block
and pair. Each pair pits one pattern-conforming item against one pattern-nonconforming
item:

Pattern conformity Studied pattern
HH HV HH HV HH HV
+ + vs. − − 16 16
+ − vs. − + 16 16

(7) Properties of this design:

a. For half of the Test pairs, the correct response depends on the Study pattern; for the other half,
it does not. Allows effects of learning to be separated from those of pre-existing preferences.

b. Does not test generalization to new vowels or new combinations of vowels (i.e., does not
distinguish between learning vowel harmony and learning a list of vowel-vowel sequences).
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(8) Participants: 18 native speakers of American English. None had studied or otherwise learned a
language with vowel harmony. One explicitly noticed pattern (post-experiment questionnaire)
and was replaced.

(9) Results of Experiment 12.

a. Performance in HV condition was not distinguishable from chance.

b. Participants in HH condition nearly doubled their odds of a correct response, in both the first
and second half of the Test phase.

Coefficient Estimate SE z Pr(>| z |)
(Intercept) 0.27419 0.19609 1.39830 0.162024
Studied HH 0.71606 0.27884 2.56804 0.010228 *
V1 = V2 –0.25962 0.20536 –1.26420 0.206160
2nd half –0.27877 0.24170 –1.15339 0.248750
Studied HH × 2nd half –0.05977 0.35390 –0.16889 0.865882
HH-nonconforming 0.10146 0.13140 0.77217 0.440015
1st in pair 0.46502 0.17679 2.63042 0.008528 **

(10) ⇒ HH pattern learned better than HV.

(11) Exp. 2 was like Exp. 1, except that a voice-voice pattern replaced the height-height one:

a. “VV pattern”: C1 and C2 agree in voicing.

b. “HV pattern”: V1 high iff C2 voiced, as in Exp. 2.

(12) Results of Experiment 2.

a. Participants in the HV condition were again at or near chance.

b. Those who studied the VV pattern doubled their odds of a correct response. The effect did
not diminish significantly over the course of testing.

Coefficient Estimate SE z Pr(>| z |)
(Intercept) 0.157994 0.225038 0.70208 0.482631
Studied VV 0.736347 0.309506 2.37911 0.017355 *
C1 = C2 –0.480821 0.199329 –2.41219 0.015857 *
2nd half 0.022876 0.246716 0.09272 0.926125
StudiedVV × 2nd half –0.540257 0.348545 –1.55004 0.121133
VV-nonconforming 0.271081 0.132973 2.03862 0.041488 *
1st in pair 0.468015 0.174332 2.68462 0.007261 **

(13) ⇒ VV learned better than HV also.

2Analyzed by mixed-effects logistic regression with Participant as a random effect. The independent variables
were chosen as follows: Each of the 6 experiments in this series was modelled using a larger set of terms. The models
were then reduced by backwards elimination. Any term which could not be eliminated from at least one of the 6
models was retained (mutatis mutandis) in the analysis of all of them.
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2.2 Experiments 3 and 4: Height-backness and place-voice ≈ height-voice

(14) Maybe HH and VV beat HV only because within-tier dependencies (vowel-to-vowel or
consonant-to-consonant) are easier than cross-tier ones (vowel-to-consonant). Let’s see:

(15) Exp. 3 was like Exp. 1, except that a height-backness pattern replaced the height-height
one:

a. “HB pattern”: V1 high iff V2 back

b. “HV pattern”: V1 high iff C2 voiced.

(16) Results of Experiment 3.

a. Once again, those who studied the HV pattern performed at chance.

b. Those who studied the HB pattern did marginally better, but the difference did not reach
the conventional 5% criterion, and disappeared entirely in the second half of the Test phase.

Coefficient Estimate SE z Pr(>| z |)
(Intercept) –0.099234 0.197518 –0.50241 0.61538
Studied HB 0.495776 0.284555 1.74228 0.08146 .
2nd half 0.104045 0.239182 0.43500 0.66356
Studied HB × 2nd half –0.583042 0.343219 –1.69875 0.08937 .
HB-nonconforming –0.115660 0.119626 –0.96685 0.33362
1st in pair 0.455936 0.171834 2.65335 0.00797 **

(17) Exp. 4 was similar, but used a place-voice dependency:

a. “PV pattern”: C1 velar iff V2 voiced

b. “HV pattern”: V1 high iff C2 voiced (as in Exp. 2).

(18) Results of Experiment 4.

a. Yet again, studying the HV pattern led to near-chance performance.

b. Those who studied the PV pattern did marginally better, but only in the first half of the Test
phase.

Coefficient Estimate SE z Pr(>| z |)
(Intercept) –0.21116 0.19910 –1.06054 0.288901
Studied PV 0.48402 0.28433 1.70231 0.088697 .
2nd half 0.16938 0.24039 0.70461 0.481052
Studied PV × 2nd half –0.42830 0.33915 –1.26286 0.206640
PV-nonconforming 0.21102 0.12021 1.75546 0.079181 .
1st in pair 0.49330 0.16986 2.90418 0.003682 **
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(19) Exps. 3 and 4 show that when other factors are controlled, one-feature dependencies are
learned better than two-feature dependencies.

a. The results of 1 and 2 resemble each other, as do those of 3 and 4. Apparently the content
of the features doesn’t matter, only their formal arrangement.

1 2 3 4
Coefficient HH VV HB PV
(Intercept) 0.274 0.157 –0.099 –0.211
Studied XY 0.716 * 0.736 * 0.495 . 0.484 .
V1 = V2 or C1 = C2 –0.259 –0.480 * — —
2nd half –0.278 0.022 0.104 0.169
Studied XY × 2nd half –0.059 –0.540 –0.583 –0.428
XY-nonconforming 0.101 0.271 * –0.115 0.211 .
1st in pair 0.465 ** 0.468 ** 0.455 ** 0.493 **

3 Simplicity, multiplicity, and generality

(20) ⇒ Learning a syntagmatic dependency between two feature instances is facilitated when they
are both instances of the same feature.

a. Corroborates Wilson (2003)’s finding that a [nasal]-[nasal] dependency is learned better than
a [nasal]-[Dorsal] dependency.

b. It does not seem to matter whether the dependency has a robust phonetic precursor or not—
i.e., the real-world interpretation of the feature instances is irrelevant; all that matters is that
they are the same.

(21) “Paradigmatic simplicity bias”: Experiments of Saffran and Thiessen (2003).

a. 9-month olds, familiarized on a list of pattern-conforming nonsense words, then exposed to
two pattern-conforming and two pattern-nonconforming words, then tested to see how long
they liked to listen to each of those 4 words.

b. Exp. 2 (SIMPLE): Words were CVCCVC, where CVC = [ptk]V[bdg] (or the reverse, for half
of the participants). Result: Liked the non-conforming words more. ⇒ Learned the pattern.

c. Exp. 3 (COMPLEX): Like Exp. 2, but CVC = [pdk]V[ptg] (or vice versa). Result: No
difference in listening time.

(22) There’s already a proposal about paradigmatic simplicity bias (Pater, 2008; Pater et al.,
2008).

a. Induction of two-feature constraints yields multiple overlapping constraints supporting the
[ptk]-vs.-[bdg] pattern (e.g., “Be voiceless”, which overlaps with “Be voiceless and labial”,
“Be voiceless and coronal”, “Be voiceless and dorsal”).

b. Induction yields isolated constraints supporting the [pdk]-vs.-[btg] pattern (e.g., “Be voiceless
and labial”, “Be voiced and coronal”, “Be voiceless and dorsal”) which conflict with more
general constraints (e.g., “Be voiceless” conflicts with “Be voiced and coronal”).

c. When the induced constraints are given to a Maximum Entropy learner, it learns (goes from
chance to any given criterion) faster in the [ptk] case than the [bdg] one.
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(23) Can we extend this explanation to paradigmatic simplicity bias? Two basic ways to implement
if-and-only-if patterns:

a. Two “retail” constraints share the work: ∗+− and ∗ −+.

b. A single “wholesale” constraint does it all: ∗{+−,−+} (i.e., an Agree constraint).

What if HV pattern is supported only by retail constraints, whereas HH and VV are supported
by both wholesale and retail constraints?

(24) Depends on learning algorithm. Stick with the Maximum Entropy algorithm as formulated
by Jäger (to appear), for compatibility with Pater et al. (2008) and Hayes and Wilson (2008),
and because the math is easier than with the Gradual Learning Algorithm (Boersma, 1998;
Boersma and Hayes, 2001). Assumptions:

a. A “pure phonotactic learner” in the sense of Hayes (2004); its goal is to distinguish well-formed
from ill-formed surface strings.

b. Only one input, /i/; candidate outputs are ++,+−,−+,−−.

c. No faithfulness constraints; only markedness constraints c1, . . . , cN . Constraint cj assigns
cj(o) violation marks to candidate [o].

d. Constraints are not ranked, but weighted with weights w1, . . . , wN , which can be positive or
negative.

e. For a given set of weights, the probability of a given output [o] is proportional to exp(
∑

j wjcj(o)).

f. All constraints have initial weight 0.

g. Training data is sampled from {++,−−} with uniform probability.

(25) We start with the Retail learner, which has only the two constraints ∗[+−] and ∗[−+]. If
we set any success criterion Ω in terms of the odds that the learner will map /i/ to one of
{++,−−}, we can show (details omitted) that the time t required to reach that criterion is,
on average,

t =
2
η

(Ω + ln(Ω) + 1)

where η is the learning rate (the nudge each constraint gets when the learner makes a relevant
error).

(26) A Wholesale+Retail learner reaches the same criterion after only t/3 training trials (simula-
tions in Praat, Boersma & Weenink 2005) :

Retail Double Retail Wholesale Wholesale+Retail
t t/2 t/2 t/3

∗[+−], ∗[−+] ∗[+−], ∗[−+] ∗[+−], ∗[−+]
∗[+−], ∗[−+]

∗{[+−], [−+]} ∗{[+−], [−+]}
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(27) The Wholesale-Retail learner’s advantage is due to two factors:

a. Constraint multiplicity : All of the positive candidates are supported by two constraints rather
than one. In fact, we can get a twofold increase in the Retail learner’s speed by simply
duplicating the Retail constraints in the Double-Retail learner.

b. Constraint generality : The learner promotes the Wholesale constraint in response to two
kinds of errors rather than just one: Training on [++] teaches the learner about [−−], and
vice versa. We can double the Retail learner’s speed by merging its two constraints to make
the Wholesale-only learner.

(28) Yields new question: Why do the HH and VV patterns have wholesale constraints, but not
the HV pattern?

4 Inducing subtree constraints

(29) Proposed answer: Constraints are induced according to a schema which allows iff relations be-
tween two instances of same feature, but not between two instances of different features.

a. Iff constraints represented using variables, e.g., Agree-[high] is ∗[αhigh] . . . [−αhigh].
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b. Variables are relativized to specific features: ∗[αhigh] . . . [α voice] (the would-be wholesale
HV constraint) is interpreted as ∗[αhigh] . . . [β voice]

(30) Why do we need constraint induction?

a. “Crazy rules” (Bach and Harms, 1972) ⇒ induce constraints from phonological data.

b. “Inductive grounding” (Hayes, 1999) ⇒ induce constraints from phonetic data.

(31) Current constraint inducers won’t help:

a. No syntagmatic feature variables—can’t express wholesale iff constraints like Agree or OCP
(Gildea and Jurafsky, 1995; Albright and Hayes, 2002; Heinz, 2007; Hayes and Wilson, 2008)

b. Arbitrary limits on constraint complexity in order to make exhaustive search feasible, leading
to . . .

c. . . . difficulties with non-adjacent dependencies (see discussion in Hayes and Wilson (2008,
6.2))

d. Poor integration of features and prosodic structure; positional constraints aren’t supported
Hayes and Wilson (2008).

(32) We need to liberalize the constraint schema, without making the space unsearchable. Here is
one attempt:

a. §4.1 describes a constraint schema, the Subtree Constraint schema, which provides for syn-
tagmatic variables, constraints of arbitrary complexity, and non-adjacent dependencies.

b. §4.2 discusses an algorithm for inducing Subtree constraints from phonological data.

c. §4.3 presents some (preliminary!) simulation results showing how the Subtree schema and
inducer apply to the HH>HV case.

4.1 The Subtree Constraint Schema

(33) Idea: Represent constraints by representing a locus of violation (or locus of satisfaction).
⇒ Constraints are subtrees of representations, and every representation is itself a constraint
(Burzio, 1999).

(34) Two basic kinds of node:

a. Features

(i) Binary: [+ cont], [−nas], etc. Have no dependents.

(ii) Unary: [Place], etc. Have named, unordered dependents.

(iii) A feature tree rooted at A matches once in another one rooted at B if and only if A
matches in B, and all of A’s dependents match in their namesakes in B.

[Place]
[Cor]

[+ant]
matches once in

[Place]
[Cor]

[+ant]
[+dist]

, but not in

[Place]
[Lab]
[Cor]
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b. Prosodic categories (“PrCats”)

(i) Have nameless, ordered dependents.

(ii) Of which one may be designated the head.

(iii) May be unanchored, left-anchored, right-anchored, or left- and right-anchored, forcing
the match to start or end with the initial or final dependent.

(iv) A tree rooted at PrCat A matches in another one rooted at B one time for every way
to match every dependent of A in a dependent of B, preserving order and adjacency,
subject to some requirements:

i. Anchoring

ii. Heads only match in heads

iii. A must itself match in B (both have to be the same prosodic type, and any anchors
set in A must also be set in B).

(v) Here’s Onset, à la (Smith, 2006); letters abbreviate big feature trees rooted at [Root]:

Lσ

[Root]

matches once in σ

??
??

??
??

i b

, but not in σ

��
��

��
��

??
??

??
??

b i b

nor σ

??
??

??
??

i b

(35) The number of matches returned by a constraint is the number of different ways to match
the constraint in the representation. E.g.,

Ft

||
||

||
||

BB
BB

BB
BB

σ σ

matches twice in Ft

||
||

||
||

BB
BB

BB
BB

σ σ σ

(36) This is a fairly flexible schema, even without variables. Here are a few familiar constraints
(negative constraints: “*”, positive constraints: “+”:

*CplxOns *NoCoda *NC
σ

iiiiiiiiiiiiiiiiiiii

tttttttttt

[Root] [Root] [Root]

σ

KKKKKKKKKK

[Root] [Root]

PrWd

rrrrrrrrrr

MMMMMMMMMMM

σR Lσ

[Root]
[+nas]

[Root]
[Lar]
[–voi]
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*Intervocalic voicing *Final obst. devoicing +FtForm=Trochee

PrWd

lllllllllllllll

OOOOOOOOOOOO

σR Lσ

vv
vv

vv
vv

v

FFFFFFFF

[Root]
[+cons]
[+son]

[Root]
[Lar]

[–voi]

[Root]
[+cons]
[+son]

σR

[Root]
[-son]
[Lar]

[+voi]

L Ft R

uuuuuuuuu

uuuuuuuuu

IIIIIIIII

σ σ

(37) New term: The genus of a PrCat node or feature node is the category of which that node is
an instance. Examples of genera: PrWd, syllable, Place, constricted glottis, etc.

(38) Variables

a. A variable is itself a kind of node. There is a variable genus for every non-variable genus,
e.g., [α Syll] (PrCat), [β P lace] (unary feature), or [γ voi] (binary feature).

b. The binary ones can have coefficients, e.g., [−γ voi].

c. Variables have no dependents.

d. A successful match of a constraint in a representation can only occur if

(i) Every instance of a variable is matched to a node of the same genus.

(ii) All instances of a given PrCat variable or unary-feature variable in the constraint are
matched to identical subtrees of the representation.

(iii) All instances of a given binary-feature variable are matched so that the variable coef-
ficients times the representation’s coefficients are the same (e.g., [α back] . . . [−α back]
matches in [+back] . . . [−back] or in [−back] . . . [+back].

(39) Some familiar constraints with variables:

*Agree-[high] +Nasal place assimilation
PrWd

kkkkkkkkkkkkkkkk

TTTTTTTTTTTTTTTTT

σ σ

[Root]
[Place]

[Dorsal]
[α high]

[Root]
[Place]

[Dorsal]
[−α high]

PrWd

oooooooooooo

OOOOOOOOOOOO

σR Lσ

[Root]
[+nas]

[α Place]

[Root]
[-cont]

[α Place]

(40) Advantages:

a. can represent lots of different constraint types

b. implements syntagmatic variables ⇒ wholesale if-and-only-if constraints

c. handles long-distance dependencies gracefully
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d. sets up the constraint set for faster learning of HH and VV patterns than of HV pattern.

4.2 Supervised learning of subtree constraints

(41) But is the space of possible constraints efficiently searchable? We can’t search it exhaus-
tively, because it is too big (infinite), but perhaps we can do so non-exhaustively. Here is one
attempt.

(42) Non-exhaustive search idea: Use an evolutionary algorithm, so that the learner only has to
keep a few schemas in mind at a time, and keeps improving them through small variations
(Eiben and Smith, 2003).

a. Population size is fixed.

b. Initial constraint set is the set of training data, since representations are constraints. Simi-
lar to Albright and Hayes (2002) Minimal Generalization Learner—start with the data and
simplify it.

c. For each constraint, calculate fitness (absolute value of difference between mean number of
matches per item in negative and positive data).

d. There is one birth per training cycle. Opportunities to reproduce asexually are raffled off
using “fitness-proportional selection” (the fitness of this constraint divided by that of all
constraints).

e. The new-born constraint is a recursively mutated copy of its parent, i.e., dependents are
copied with mutation.

f. The new mutant joins the population (displacing the least-fit old constraint) iff

(i) It is at least as fit as the least-fit old constraint, and

(ii) It is not an exact duplicate of any old constraint.

g. The algorithm ends after a set number of births.

(43) Goal of the learner: Given positive and negative training data (identified as such) and a time
limit, find the N “fittest” constraints, where a “fit” constraint is one which matches more often
in the average positive item than negative, or vice versa.

a. All induction is done before any ranking, as in Pater et al. (2008). Not interleaved with
ranking, as in Hayes and Wilson (2008).

b. Not necessarily the best criterion for individual constraints—ignores, e.g., within-category
variability.

4.3 Application to HH>HV

(44) How long does it take the Subtree learner to find the wholesale and retail constraints in a
simulation of Exp. 1?

(45) Used the following representational scheme, a slight simplification of a generic one that I
took from a phonology textbook(Gussenhoven and Jacobs, 2005). (Missing are: feet, moras,
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[Rad], [±constricted glottis], and [±strident].)

PrWd
σ

[Root]
[±cons], [±son], [±approx], [±cont], [±nas], [±lat]
[Lar]

[±voice]
[±spread glottis]

[Place]
[Lab]

[±round]
[Cor]

[±ant]
[±dist]

[Dor]
[±high]
[±low]
[±back]

(46) Simplifications:

a. Training data was from a reduced version of Experiment 1 (HH vs. HV), made by removing
the initial unbalanced C1. This yielded one of each of the 64 possible V1C2V2 sequences, 32
positive and 32 negative items

b. Turned off prosodic variables.

c. Banned constraints with different variables of the same genus (e.g., [αDor][β Dor]), because
I haven’t figured out a reasonable mutation scheme.

(47) Results (still skimpy):
Learning trials required to find first

Parameter set Run HV retail HH retail HH wholesale
I a. 31100 36500 53100

b. 100300 18700 176200
c. 60300 28000 11300

II a. 4100 10700 69900
b. 5400 5000 189600
c. 59200 1400 83100

(48) ⇒ Search space isn’t prima facie unsearchably large.

(49) Main known shortcomings:

a. Needs negative as well as positive data. Possible ways out:

(i) Use English lexicon as negative data.

(ii) Make own negative data by mutating the positive data. (Eisner, “contrastive estima-
tion”?)
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b. No science behind parameters (population size, mutation probabilities, etc.)

c. Subtree schema can’t ignore prosodic structure

d. Doesn’t implement negation of non-binary variables, which forces constraints like Place As-
similation to be stated positively rather than negatively. (Probably technical rather than
conceptual problem.)

e. Constraints become less diverse over time.

5 Conclusions

(50) Main points:

a. Humans learn single-feature dependencies faster than two-feature ones, regardless of real-
world interpretation of features (“syntagmatic simplicity bias”).

b. Connectable to paradigmatic simplicity bias (for featurally-systematic over featurally-arbitrary
classes) via effects of constraint multiplicity and generality (“wholesale” and “retail” con-
straints) on incremental learning of constraint weightings.

c. Current models of constraint induction (from phonological or phonetic data) don’t induce
wholesale constraints (because their constraint schemas can’t represent them), and so can’t
capture syntagmatic simplicity bias.

d. Subtree Constraint Schema (constraint = representational subtree matching a locus of vio-
lation or satisfaction) can represent wholesale/retail distinction, but price is infinite search
space.

e. Space may be searchable using non-exhaustive search technique (evolutionary algorithm).

f. Simplicity emerges from the way the acquisition mechanisms work, rather than being imposed
from outside as a grammar-selection criterion (Hale and Reiss, 2000, fn. 8, p. 164).

Where could this all lead?

(51) Explanation schema:

a. Constraint schema defines constraint space.

b. Induction algorithm plus data (phonetic or phonological) searches space, gets constraints.

c. Ranking algorithm plus constraints and data yields grammar.

(52) ⇒ Explanatory focus shifts to

a. Constraint schemas, generation, and testing (Boersma, 1998; Hayes, 1999; Smith, 2002, 2004;
Boersma and Pater, 2007).

b. If constraints are representations, convergence of constraint schemas with representational
schemas like Feature Geometry.

c. If space is searched by mutation and selection, considerations of mutation algorithm (connec-
tion to gradualism in Harmonic Serialism?)
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(53) Example: ways to use constraint multiplicity and generality, plus induction, to account for
bias:

a. Constraint synonymy. Schema sometimes produces formally distinct constraints which give
same marks to same candidates. ⇒ Patterns supported by such equivalent constraints would
benefit from multiplicity.

b. Extensional equivalence. In particular language, intensionally distinct constraints may be ex-
tensionally equivalent, and would thus act like copies of each other. E.g., voicing assimilation
in French could be described either [voice] assimilation or [Laryngeal] assimilation; a ban on
[+low] vowels in some context is also a ban on [+low,−high] vowels. Very frequent in Subtree
learner.

c. Constraint overlap. It could also happen that the constraint set contains constraints which,
though they do not act identically all the time, do so often enough to have the effect of mul-
tiplicity. Example: The PCL as described in the Pater UNC colloq talk uses a “tier-sensitive
bigram” constraint schema which is engineered to induce multiple overlapping constraints in
response to within-tier dependencies, but not between-tier ones.

d. Inducer timeout. If there are more ways to express Constraint A than Constraint B, then
Constraint A is likely to be found first, and in a time-limited learner B may not be found at
all.
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