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Goal: Comparison of raw automatic vs. human-supervised measurements of /aɪ/ and /eɪ/ from an
experiment about English Diphthong Raising.

(1) Bird’s-eye view of the project:

a. Many (maybe most) phonological patterns originate historically through phonologization of a phonetic
precursor; e.g., vowel harmony from vowel-to-vowel coarticulation (Hyman, 1976).

b. Research question: So how do non-phonetic factors like UR, prosody, and morphology come to condition
phonological patterns?

c. Three competing hypotheses: Late Abstractness, Early Abstractness, Abstract Phonetics. See Moreton
2021; Moreton et al. 2024 for details — not needed for today’s talk.

d. Case study: English Diphthong Raising (Canadian Raising plus related patterns worldwide; e.g., Cham-
bers 1973; Vance 1987, papers in Davis and Berkson 2021).

The project was presented in detail in P-Side on October 5, 2023.

(2) Experiment 1 (December 2022) collected pronunciation and judgement data from speakers across the
U.S. The audio recordings then had to be processed to extract durations and formant measurements. This
handout asks

a. whether human supervision and correction actually improved the quality of the acoustic measurements
b. whether the procedure followed by the humans was replicable, i.e., when different humans follow the

same procedure, do they get the same results?
c. how much time does it take the humans, and is the time proportional to the improvement?

(3) This is a collaboration with Kelly Berkson, Stuart Davis, Jeff Lamontagne, and Monica Nesbitt at Indiana
University, and Joe Pater at UMass-Amherst. Student RAs on this project include Abigail Amick (UNC-CH
MA 2024), Erin Humphreys (UNC-CH MA 2024), and Brandon Osgan (currently UNC-CH first-year MA
student). Supported in part by U.S. NSF BCS 1651105, “Inside phonological learning”, to E. Moreton and
K. Pertsova.

1 Experiment and post-processing

(4) Participants read and sorted five word lists:

List Categories N Examples
1 /i/ vs. /æ/ 18 beak, grass, flag, bead, …(practice)
2 aɪ /_ ±voice 12 tripe, tribe, fife, five, …
3 aɪ /_ ±voice 13 vibe, bite, strife, high, …
4 aɪ /_ ±voice 17 vibration, titanic, triumphant, dynamic, …
5 aɪ /_ ±voice 17 phytology, Fightology, rhizome, Pisces, …
6 eɪ /_ ±voice 18 ape, Abe, face, phase, …
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(5) Data collection: 217 participants run in December 2022. Stopping criterion was 10 “Perfect Sorters”,
i.e., 10 participants whose phonological raising index on the monosyllabic /aI/ words (Pages 2 and 3) was
1. (So about 5% of participant pool were Perfect Sorters.) The procedure yielded 1240 audio files and 8621
sort responses.

(6) Data markup and scoring: This is described in the “Procedure” handout. The gist is that

a. The lists participants were asked to read were checked by humans against the recordings of what they
actually said, and the list were edited if necessary to match the words actually said.

b. The Montreal Forced Aligner generated Praat TextGrid files showing phoneme boundaries.

c. The TextGrids and sound files were viewed together in Praat, and the alignment and labelling were
corrected by a human.

d. A human viewed each participant’s Text Grids and sound files together, and chose formant-tracker
settings for that particular speaker. Praat then extracted the formant tracks to Formant files.

e. Homebrew code marked the points of F1 and F2 maxima within the critical diphthong, and the values
of F1 and F2 at those points in the TextGrid files.

f. A human again viewed the TextGrids and sound files together in Praat and corrected errors in the
marked points.

There were two independent data streams. One was done entirely by EM all the way through. The other
was done by UNC-CH RAs (Abbie Amick and Erin Humphreys for Steps a–d, and Brandon Osgan for Step
f).

(7) Both EM and the RAs have done all of Lists 2 and 3, the monosyllabic /aɪ/ items, and List 6, the
monosyllabic /eɪ/ items, so that is what this handout is about.
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(8) The total amount of time spent by the RAs on the tasks was

RA task Lists Hours Corrections made
Listening to sound files, correcting transcripts 1–6 71.5 349/1136 transcripts
Correcting phoneme boundaries 1–6 158.5 13689/32206 boundaries
Correcting extrema and formant measurements 2,3,6 76.4 (pending)
TOTAL 306

(9) Exclusions: 214 participants got as far as saving their sorting responses at the end of the experiment. Of
these, 201 completed the post-experiment questionnaire. For each of the three data sets (NONE, EM, RA)
separately, participants were excluded based on the criteria of

a. Audio: Did the participant have formant measurements for at least one word? (Done by judgement of
scorers.)

b. Responses: Did the participant have exactly 95 sort responses? (Done automatically.)
c. Practice skipping: Did the participant move at least one word when sorting the practice words (List

1)? (Done automatically.)
d. Practice failure: Did the participant correctly sort all of the practice words (List 1), except perhaps

for quiche and ant? (Done automatically.)

[1] "Data scored by NONE : Excluded 62 participants, leaving 139 out of 201"
X_audio X_responses X_skipped_practice X_failed_practice include

Mode :logical Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:194 FALSE:187 FALSE:189 FALSE:149 FALSE:62
TRUE :7 TRUE :14 TRUE :12 TRUE :52 TRUE :139

[1] "Data scored by EM : Excluded 75 participants, leaving 126 out of 201"
X_audio X_responses X_skipped_practice X_failed_practice include

FALSE:178 FALSE:187 FALSE:189 FALSE:149 FALSE:75
TRUE :23 TRUE :14 TRUE :12 TRUE :52 TRUE :126

[1] "Data scored by RA : Excluded 68 participants, leaving 133 out of 201"
X_audio X_responses X_skipped_practice X_failed_practice include

FALSE:185 FALSE:187 FALSE:189 FALSE:149 FALSE:68
TRUE :16 TRUE :14 TRUE :12 TRUE :52 TRUE :133

(10) Alignment and formant-tracking errors often yield absurd values. Suppose we don’t do any human
supervision, but instead just throw out any token that contains an absurd value. How does that compare
with a human? We added a data set called PLAUSIBLE, made from Data Set NONE by excluding any
diphthong token that failed at least one of these criteria:

Criteria
aɪ eɪ

Measurement ≥ ≤ ≥ ≤
phone duration (s) 0.1 0.6 0.1 0.6
Nuclear F1 (Hz) 400 1400 350 800
Nuclear F2 (Hz) 750 2250 1500 3250
Offglide F1 (Hz) 150 1250 200 600
Offglide F2 (Hz) 1250 3250 1750 3250

(11) The four data sets ended up with the following numbers of main-stressed /aɪ/ and /eɪ/ tokens in Lists
2, 3, and 6:

Diphthong
Scorer /aɪ/ (2, 3) /eɪ/ (6)
NONE 3467 2478
PLAUSIBLE 2945 1463
EM 3093 2253
RA 2993 2056
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Replacing humans (EM, RA) with plausibility checks (PLAUSIBLE) leads to about the same rate of
rejection for /aɪ/ tokens (10–15%), but drastically over-winnows /eɪ/ tokens (40%, as opposed to 9% or
17%). The high rejection rate for /eɪ/ is due to wildly implausible F1 values at both the nucleus and the
offglide, which seems to be mainly caused by the MFA misaligning the initial and final word boundaries.

2 Comparison of effect sizes and standard errors: /aɪ/ monosyl-
lables (Lists 2 and 3)

(12) To compare the quality of the raw automatic output against that of the two human-supervised streams,
we consider a signal that we are virtually certain must be present in the data: the shorter duration and more-
/i/-like F1 and F2 of the /aɪ/ vocoid in the pre-voiceless environment compared to the elsewhere environment
in the monomorphemic monosyllables of Lists 2 and 3.

(13) Dependent measures: The following dependent measures were used for the model fitting:

phone_dur Time interval between the left and right boundaries of the /aɪ/.

F1atF1ext F1 at the nucleus (time of F1 maximum).

F2atF1ext F2 at the nucleus (time of F1 maximum).

F1atF2ext F1 at the offglide (time of F2 maximum).

F2atF2ext F2 at the offglide (time of F2 maximum).

Time was in seconds, and formants were in Hertz.

(14) Model fitting: For each of the three data sets (NONE, EM, RA), and for each of the dependent measures,
a linear mixed-effects model was fit using the lmer method in the lme4 package in R (Bates et al., 2015).
Fixed effects were an intercept and a single coefficient for category (voiceless vs. elsewhere, with elsewhere
being the reference category). Random effects by participant were included for the intercept and category .
The model specification was thus measure ∼ 1 + category + (1 + category | participant) .

(15) Effects of voicelessness: The table below shows the values of the measure coefficent for the three data
sets, and the ratio of the effect sizes between the raw and human-corrected data sets:

_____________________________________________________________________________
Effect of voiceless Ratio of effect
___________________________________ ______________________________

measure NONE PLAUSIBLE EM RA PLAUSIBLE_NONE EM_NONE RA_NONE
_____________________________________________________________________________
1 phone_dur -0.129 -0.118 -0.139 -0.138 0.91 1.09 1.07
2 F1atF1ext -59.2 -72.1 -81.2 -67.0 1.22 1.37 1.13
3 F2atF1ext 62.5 79.2 96.9 97.7 1.27 1.55 1.56
4 F1atF2ext -55.0 -81.1 -73.6 -60.8 1.47 1.33 1.11
5 F2atF2ext 158. 185. 198. 188. 1.18 1.25 1.19
_____________________________________________________________________________

For every dependent measure, the ratios are greater than 1, i.e., the effect size is larger in absolute terms
after correction than before.

(16) Standard errors of the estimates: This next table shows the s.e.m.’s for the three data sets, and the
ratio between their magnitudes in the raw vs. human-corrected data sets:
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_________________________________________________________________________________
s.e.m of voiceless effect Ratio of s.e.m.s
______________________________________ ______________________________

measure NONE PLAUSIBLE EM RA PLAUSIBLE_NONE EM_NONE RA_NONE
_________________________________________________________________________________
1 phone_dur 0.00476 0.00460 0.00370 0.00340 0.97 0.77 0.72
2 F1atF1ext 14.4 7.05 6.20 9.56 0.49 0.43 0.66
3 F2atF1ext 16.7 9.20 7.32 10.8 0.55 0.44 0.64
4 F1atF2ext 17.3 7.47 5.29 10.5 0.43 0.31 0.61
5 F2atF2ext 14.3 12.7 11.4 12.3 0.88 0.79 0.86
_________________________________________________________________________________

For every dependent measure, the ratios are all less than 1, i.e., the standard errors are smaller after
correction than before. They’re also smaller after simply discarding implausible tokens.

(17) t values: If we express the effect in terms of the standard error of the estimate to get the t value (on
which statistical significance depends), here’s what it looks like:

_________________________________________
measure NONE PLAUSIBLE EM RA

_________________________________________
1 phone_dur -27.2 -25.7 -37.6 -40.6
2 F1atF1ext -4.10 -10.2 -13.1 -7.01
3 F2atF1ext 3.75 8.6 13.2 9.08
4 F1atF2ext -3.18 -10.9 -13.9 -5.81
5 F2atF2ext 11.0 14.6 17.4 15.2
_________________________________________

The shortening and offglide-fronting effects ( phone_dur and F2atF2ext ) are very robust. The other
spectral effects are less so.

(18) Human correction thus increases the statistical power of the experiment to detect effects of voiceless
environment on formants: It multiplies effect sizes by roughly 1.125 to 1.5, and standard errors by roughly
0.5 to 0.75, and so increases the standardized effect size (measured in standard errors) by a factor of roughly
1.5 to 3.

(19) This increase in power from human correction is approximately what we’d get by quadrupling the
number of participants (which would leave the absolute effect size unchanged, while halving the standard
error).

(20) Simply throwing out implausible tokens worsens performance on phone duration, but improves it on
everything else. It sometimes even beats the RA.

(21) The test case here was the one where we expect the biggest effects (monomorphemic monosyllables with
/aɪ/), and it used the largest number of tokens (two lists with 25 tokens in all). Once we either move to
polysyllables with more subtle effects, or subdivide the data, we will start eating into that margin.

3 Comparison of effect sizes and standard errors: /eɪ/ monosylla-
bles (List 6)

(22) The same comparison was repeated for the /eɪ/ monomorphemic monosyllables in List 6. Qualitatively,
we expect the same shortening and peripheralization effects as for /aɪ/, though quantitatively less extreme
(Moreton, 2004; Hualde et al., 2017).
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(23) Here are the values of the measure coefficent for the three data sets, and the ratio of the effect sizes
between the raw and human-corrected data sets:

_____________________________________________________________________________
Effect of voiceless Ratio of effect
___________________________________ ______________________________

measure NONE PLAUSIBLE EM RA PLAUSIBLE_NONE EM_NONE RA_NONE
_____________________________________________________________________________
1 phone_dur -0.102 -0.0883 -0.123 -0.121 0.87 1.21 1.19
2 F1atF1ext 128. -11.9 -23.2 -28.1 -0.093 -0.181 -0.220
3 F2atF1ext 79.8 28.9 32.9 48.2 0.362 0.412 0.604
4 F1atF2ext 109. -11.7 -10.7 -12.1 -0.107 -0.098 -0.111
5 F2atF2ext 45.9 28.8 24.6 28.1 0.627 0.536 0.612
_____________________________________________________________________________

The spectral effect sizes are greatly overestimated by NONE compared to the other three, which agree
with each other pretty well. NONE also gets the wrong sign for the F1 effect. Since PLAUSIBLE agrees
with the humans, it must be the case that the errors in NONE are caused mainly by gross formant-tracking
errors.

(24) Standard errors of the estimates: This next table shows the s.e.’s for the three data sets, and the ratio
between their magnitudes in the raw vs. human-corrected data sets:

_________________________________________________________________________________
s.e. of voiceless effect Ratio of s.e.s
______________________________________ ______________________________

measure NONE PLAUSIBLE EM RA PLAUSIBLE_NONE EM_NONE RA_NONE
_________________________________________________________________________________
1 phone_dur 0.00492 0.00595 0.00342 0.00358 1.21 0.70 0.79
2 F1atF1ext 23.2 3.40 2.28 12.7 0.15 0.10 0.55
3 F2atF1ext 15.8 9.23 7.65 11.8 0.58 0.48 0.75
4 F1atF2ext 23.3 2.76 2.52 13.6 0.12 0.11 0.58
5 F2atF2ext 10.4 7.58 5.24 7.3 0.73 0.50 0.70
_________________________________________________________________________________

NONE is again hopelessly worse than PLAUSIBLE, EM, and RA. The RAs had surprisingly large stan-
dard errors for the formants, but I haven’t followed up to figure out how come.

(25) t values: Here are the coefficients divided by the corresponding standard errors:

_________________________________________
measure NONE PLAUSIBLE EM RA

_________________________________________
1 phone_dur -20.7 -14.8 -36. -34.0
2 F1atF1ext 5.52 -3.50 -10.2 -2.2
3 F2atF1ext 5.05 3.13 4.30 4.08
4 F1atF2ext 4.68 -4.24 -4.25 -0.89
5 F2atF2ext 4.41 3.80 4.69 3.85
_________________________________________

We can ignore the NONE column because the coefficients themselves are garbage, so we don’t care what
the t values are. The main thing we can see here is that PLAUSIBLE is nearly as good as EM and RA for
three of the spectral measures, but not for duration or nuclear F1.

(26) The upshot here is that for /eɪ/ tokens, the raw machine-measured data (NONE) is hopeless. When
tokens with implausible values are discarded (PLAUSIBLE) or corrected (EM, RA), the situation improves
dramatically, although sensitivity to voicing effects on nuclear F1 is markedly less for PLAUSIBLE and RA
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than for EM, and sensitivity to voicing effects on duration is markedly less for PLAUSIBLE than for EM
and RA.
(27) The t values for the /eɪ/ coefficients (in 25) are much smaller than those for the /aɪ/ coefficients (in
17), by a factor of perhaps 3, meaning that voicing effects are harder to detect in /eɪ/ than in /aɪ/. This is
due not to differences in the standard errors (in 16 and 24), which are similar for both diphthongs, but to
the smaller effect size in /eɪ/ than in /aɪ/ (15, 23).

If we’re trying to see interactions between the voicing effect and other factors like morpheme boundaries,
the number of cases per cell will go down, the standard errors will go up, and the coefficients will probably
get smaller (since monomorphemic monosyllables are likely to exhibit the strongest possible effects). That
could lead to finding “significant” effects in /aɪ/ but not in /eɪ/, unless the sample sizes are chosen on the
basis of power calculations for /eɪ/ rather than for /aɪ/.

4 Conclusions

(28) Returning to the questions in (2) above:

a. whether human supervision and correction actually improved the quality of the acoustic measurements
(i) For /aɪ/: yes; the standardized effect size increases by a factor of 1.5–3, as if the number of

participants had been approximately quadrupled.
(ii) For /eɪ/: yes; the uncorrected data is useless.

b. whether the procedure followed by the humans was replicable, i.e., when different humans follow the
same procedure, do they get the same results?

(i) For /aɪ/: the absolute effect sizes are very similar for EM and RA. The standard errors are
somewhat larger for RA, but not hugely so.

(ii) For /eɪ/: the absolute effect sizes are again similar for EM and RA. The standard errors are much
larger for RA; don’t know how come.

c. how much time does it take the humans, and is the time proportional to the improvement?
(i) I didn’t keep good track of my own hours. The RAs took 306 hours in all (15.3 20-hour workweeks;

in effect, an entire semester).
(ii) If we simply take the automatically-generated output and discard tokens with implausible duration

or formant values, the result is nearly as good as humans for /aɪ/, and not drastically worse than
humans for /eɪ/.

(29) All of the foregoing is for the monosyllables, which are the simplest case. The project calls for studying
morphonologically- and prosodically-complex words (like in Lists 4 and 5), which are likely to be harder to
measure because everything happens faster. RA work is in progress (thanks, Brandon!).
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